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1. Revision History 

Revision Date Revision Description 

06/26/2012 1.0 Document created 

2. Purpose 

This document provides a quick overview of the basics of motion sensors, sensor fusion, and a list of 
applications that would benefit from motion sensors.    
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3. Introduction to Motion Sensors 

 Motion Sensors are a class of device which reacts to or senses physical motion parameters, including 
acceleration, rate, or distance. Inertial sensors are a special class of device which reacts to motion of 
the sensor itself. Also, motion sensors may indirectly measure motion by magnetic field changes, or 
changes in pressure. A typical high end cell phone includes Gyroscopes, Accelerometers, magnetic 
sensors, and pressure sensors to sense device motion [1]. 

Gyroscope Sensor: This sensor measures angular rate, usually expressed in degrees per second. 
Integrating angular rate with respect to time results in a measured angle of travel, which can be used to 
track changes in orientation. Gyroscope sensors are available from a variety of suppliers in single, 
double or triple axes which correspond to simultaneous measurement of pitch, or roll, or yaw angles. 
Gyroscopes track relative movement independently from gravity, so errors in bias estimation or 
integration result in an inherent error, or “drift” [2]. 

Accelerometer Sensor: This sensor measures acceleration, which includes acceleration components 
caused by device motion and acceleration due to gravity. The acceleration is measured in G (gees) 
which are multiples of the earth’s gravitational force (1G = 9.8 m/s^2). Accelerometers are also available 
with single, double or triple axes, defined in an X, Y, Z coordinate system. The accelerometer measures 
static device orientation by computing the measured angle of the device, compared to gravitational 
force. Periods of complex motion of the device can cause calculation of orientation to be difficult, 
particularly during rapid, complex motion, where the signal includes the summation of linear 
acceleration, centripetal acceleration, and gravity [3]. 

Magnetic (Mag) Sensor: Magnetic sensors measure magnetic field, typically in units of microTeslas 
(uT) or Gauss (100 uT = 1 Gauss).  The most common version for mobile electronics is a triple axes Hall 
Effect magnetometer. The magnitude of the Earth’s magnetic field varies between 25 and 65 uT, and in 
angle of inclination depending on geographic location. For the continental United States, the intensity 
varies between 45 and 55 uT, at an angle between 50 and 80 degrees. By computing the angle of the 
detected earth’s magnetic field, and comparing that measurement angle to gravity as measured by an 
accelerometer, it is possible to measure a device’s heading with respect to North with a high degree of 
accuracy [4]. 

Pressure Sensor: Pressure sensors measure differential or absolute pressure and the units are 
typically hectopascal (hPa) or milliBar (mbar), which are equivalent. Standard atmospheric pressure (at 
sea level) is defined as 1,013.25 hPa. Changes in altitude (halt) result in a change in detected ambient 

air pressure (psta) according to the equation: ℎ��� = 	�1 − 
 �������.���.������� × 145366.45, and can be used 

to track vertical motion [5]. 
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4. Introduction to Sensor Fusion 

Sensor fusion describes the method to derive a single, high accuracy estimate of device orientation or 
position, combining the output of various sensors. The mathematical algorithms behind sensor fusion 
are complex, and not covered in great detail. This document focuses on the output of typical sensor 
fusion algorithms, which are of interest to a typical software developer. For example, Android OS 
contains several sensor output and motion outputs which are linked here at the end of the paragraph [6]. 

Gravity: Gravity refers to the earth gravity excluding the acceleration caused by the user, three 
dimensional vector, with units in m/s^2, consisting of a relative angle between the device body-frame 
and gravity vector. An accelerometer can measure Gravity when the device is stationary, or in 
combination with a Gyroscope during periods of motion. There are many applications which utilize 
Gravity, including detecting orientation of the device with respect to earth, or games which utilize tilt 
angle to control an airplane’s lift or the steering wheel of a car. Phones with a gyroscope sensor will 
have a much more accurate Gravity measurement when the device is in use, and a faster reaction time 
to quick changes in orientation. 

Linear Acceleration: This is equivalent of acceleration of the device as measured from the 
accelerometer, with the gravity vector subtracted from this value. The result is the linear acceleration of 
the device, which can be utilized to measure the device movement in three dimensional space. The 
accuracy of this value is dependent on the tracking accuracy of the Gravity vector, and if used for motion 
integration is typically only useful for short durations. The units are in m/s^2 for android OS.  

Orientation (attitude): Orientation is similar to the set of Euler angles of yaw (Azimuth), pitch, and roll, 
with units in degrees. The Android OS Orientation value uses the following definition repeated here: 
Azimuth (yaw) is defined as the angle between the magnetic north direction and the y-axis, around the 
z-axis (0 to 359). 0=North, 90=East, 180=South, 270=West. Pitch is defined as the rotation around x-
axis (-180 to 180), with positive values when the z-axis moves toward the y-axis. Roll is defined as the 
rotation around y-axis (-90 to 90), with positive values when the x-axis moves toward the z-axis. The 
Orientation angles follow the device motion, and can be used for augmented reality, pointing, or aiming 
applications [6]. 

Rotation Vector: A Rotation Vector is the result of a sensor fusion algorithm and is derived from a 
combination of sensor data from accelerometer, gyroscope and magnetometer. The rotation vector 
represents a rotation angle around a specified axis and corresponds to the vector components of a unit 
quaternion. In Android OS, if the Rotation Vector value.length = 4, the Rotation Vector is equivalent to a 
unit quaternion. Android OS includes a helper function, getQuaternionFromVector(), which does this 
conversion as needed. This function can be used to directly follow device motion. The device Rotation 
Vector and Quaternion orientation are synonymous [7]. 

For graphic applications, multiply/divide operations on the device Quaternion are the simplest 
implementation of motion. A quaternion can be directly manipulated to reflect yaw, pitch and roll 
movements, and, if needed, reset to the identity quaternion to transfer body-frame orientation to world-
frame orientation or other reference orientation. The derivative of a quaternion is also related to angular 
rate, and can be utilized for various applications [8]. 

Sensor Fusion Basics: While there are many techniques to perform sensor fusion, this section will 
describe the basic steps required for a simple form of sensor fusion. The goal is to calculate a device 
Quaternion from where mathematically the orientation, gravity, rotation vector, rotation matrix, and Euler 
angle can be derived.  

Step 1: Convert Gyroscope angular rate to a quaternion representation, where �� !is the angular rate 

and "� !is the normalized quaternion.  #"� !# = 	 12	 �� ! ∗ "� ! 
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Step 2: Convert Accelerometer data to world coordinates. This means using the Quaternion above to get 
the appropriate coordinate system for world-frame motion.  Here &'� ! is the body coordinates of the 

device, while &(� ! is in world-frame.  &(� ! = "� ! ∗ &'� ! ∗ "� !) 
Step 3: Create acceleration measurement feedback quaternion as below.  

"*� ! = +	0	&-.� ! − &-/� !				00 ∗ 1234 

Step 4: Once converted to world coordinates, accel feedback and gain is used to generate a feedback 
quaternion which is then added to previous quat along with gyro generated quaternion. The result is a 
Quaternion that will track the gyroscope measured data, but will drift towards the accelerometer 
measurement, according to the value chosen for gain. 

Similarly, magnetometer data can be added to the yaw component of the quaternion.  

Calibration: Sensors exhibit changes in their measurement output over time and require initial (factory) 
calibration and periodic calibration to maintain performance. Bias and gain, which define the sensor’s 
linear transformation between measurement and resulting value, are subject to drift and instability 
according to sensor behavior, misalignment, or environmental factors, such as temperature. In Android 
OS, calibration is performed by the background sensor framework, and the application can simply utilize 
the pre-calibrated values.  
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5. Motion Interface Applications 

Here is a partial listing of subcategories and descriptions of the types of Motion Interface Applications[9]: 

Viewing Applications  

a. Panorama Viewer: An application which allows the user to view a panoramic image, giving a 
360 degree or wide angle view of an image. 

b. Gaming: Immersive gaming where the user can move the device to match the character / 
object movement, similar to a “First person shooter.” 

c. Control: An application where the user controls a toy or device with motion rather than 
traditional remote joystick, touch or buttons. 

d. Virtual Reality: Virtual reality application where a device can be used as a manipulator inside 
a virtual room or space. 

e. LBS: Applications which use motion to detect heading direction and interface with , often in 
combination with other sensors like GPS and WIFI, to track user movement to enable 
Location Based Services.  

f. Gallery: Interface with an image gallery or menu in 3D space. 

Image Capture Applications 

a. Panorama Capture: Applications which use motion tracking to assist in taking panoramic or 
360 degree images with a device camera. 

b. Interface with camera to mapping like regular maps, indoor maps, mapping a room 

c. 3D: Applications which use motion tracking to assist in taking a 3D view of an object, through 
a sequence of still photos or video frames.  

d. Image stabilization: Using device motion to assist, track, correct, or inform a user in taking 
higher quality images.  

e. Video Stabilization: Implementations of video stabilization using motion data to eliminate 
rolling shutter effects or other artifacts during video capture. 

User interface  

a. Gestures: Gesture assisted user interface where normal gesture like shake, swipe, flick can 
be included as a user interface feature instead of a button or touch 

b. Smart TV: Motion based interface to use it as pointing device for TV’s etc. 

Activity and sports 

a. Activity Monitor: Use to detect human activity and link it with health and wellness programs, 
including calorie counting.  

b. Pedometer: Applications which track steps. 

c. Self-Improvement: Applications which utilize the motion sensor of the device to track sleep 
habits, posture, walking gait, etc., with the intent on providing information for healthy living. 
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Appendix: Different Representations of Device Or

The device orientation, or attitude, can be represented in many different mathematic forms, such as 
Euler angles, quaternion, rotation matrix, etc.  In this paper we will give an overview to these different 
forms of representation and also provid
from one form to another. 

Device Orientation: World Coordinates and Device Coordinates

Figure 1 shows the common definition of the coordinate systems used in handheld devices.  The device 
coordinate system (the left image) is defined relative to the screen of the phone in its default orientation.  
The X axis is horizontal and points to the right of the device, the Y axis is vertical and points up, and the 
Z axis points towards the outside of th
screen have negative Z values.  In the world coordinate system (the right image), the Z axis is 
perpendicular to the ground, and thus the negative Z points to the direction of the earth gr
axis roughly points to East and the Y axis points to magnetic North.

To create a motion-aware phone applications (e.g. panorama viewer), we would like to keep track of the 
orientation of the device toward the world coordinate system at all ti

  

Figure 1.  Device coordinate system (left) and world coordinate system (right).

Euler Angles 

The Euler angles are three angles introduced by Leonhard Euler (1707
orientation of a rigid body.  Euler
aircraft attitude or robotic arm movement.  Euler’s rotation theorem tells us that any orientation can be 
described as three consecutive rotations.  The following illustration shows a sequenc
consecutive rotations that changes the orientation of a device from the coordinate system 
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Different Representations of Device Orientation 

The device orientation, or attitude, can be represented in many different mathematic forms, such as 
Euler angles, quaternion, rotation matrix, etc.  In this paper we will give an overview to these different 
forms of representation and also provide a simple explanation to show how to derive the representation 

Device Orientation: World Coordinates and Device Coordinates 

Figure 1 shows the common definition of the coordinate systems used in handheld devices.  The device 
dinate system (the left image) is defined relative to the screen of the phone in its default orientation.  

The X axis is horizontal and points to the right of the device, the Y axis is vertical and points up, and the 
Z axis points towards the outside of the front face of the screen.  In this system, coordinates behind the 
screen have negative Z values.  In the world coordinate system (the right image), the Z axis is 
perpendicular to the ground, and thus the negative Z points to the direction of the earth gr
axis roughly points to East and the Y axis points to magnetic North. 

aware phone applications (e.g. panorama viewer), we would like to keep track of the 
orientation of the device toward the world coordinate system at all times.   

 

.  Device coordinate system (left) and world coordinate system (right).

are three angles introduced by Leonhard Euler (1707-1783) to describe the 
orientation of a rigid body.  Euler angles are commonly used in navigation and robotics to describe 
aircraft attitude or robotic arm movement.  Euler’s rotation theorem tells us that any orientation can be 
described as three consecutive rotations.  The following illustration shows a sequenc
consecutive rotations that changes the orientation of a device from the coordinate system 

 

Figure 2.  Z-X'-Z' Euler angle definition. 

 

   

The device orientation, or attitude, can be represented in many different mathematic forms, such as 
Euler angles, quaternion, rotation matrix, etc.  In this paper we will give an overview to these different 

e a simple explanation to show how to derive the representation 

Figure 1 shows the common definition of the coordinate systems used in handheld devices.  The device 
dinate system (the left image) is defined relative to the screen of the phone in its default orientation.  

The X axis is horizontal and points to the right of the device, the Y axis is vertical and points up, and the 
e front face of the screen.  In this system, coordinates behind the 

screen have negative Z values.  In the world coordinate system (the right image), the Z axis is 
perpendicular to the ground, and thus the negative Z points to the direction of the earth gravity.  The X 

aware phone applications (e.g. panorama viewer), we would like to keep track of the 

.  Device coordinate system (left) and world coordinate system (right). 

1783) to describe the 
angles are commonly used in navigation and robotics to describe 

aircraft attitude or robotic arm movement.  Euler’s rotation theorem tells us that any orientation can be 
described as three consecutive rotations.  The following illustration shows a sequence of the three 
consecutive rotations that changes the orientation of a device from the coordinate system xyz to x’y’z’: 
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1.  xyz to x’’’y’’’z’’’ (yaw): rotate by an angle ψ along the z-axis, 

2. x’’’y’’’z’’’ to x’’y’’z’’ (pitch): rotate by an angle Ѳ along the former x-axis (now x’’’),  

3. x’’y’’z’’ to x’y’z’ (roll): rotate by an angle φ along the former y-axis (now y’’). 

The Euler angles (Ѳ, φ, ψ) are also called “pitch”, “roll”, and “yaw” angles.   We can use the phone in 
Figure 1 to explain the rotation sequence.  Suppose we want to program a robotic arm to move the 
phone to a certain orientation from the phone’s initial position.  The robotic arm can complete the task by 
running the following three steps of action:  

1. rotate the phone by an angle ψ along the z axis while keep the phone on the flat surface (i.e. yaw 
movement), 

2. raise the upper half of the phone by an angle Ѳ (i.e. pitch movement), 

3. rotate the phone along its long axis by an angle φ (i.e. roll movement). 

Note that the rotation sequence is non-commutative.  Shuffling the order may result in different 
orientation. 

Also note that the Euler angle definition is not “unique”.  There are many different conventions for Euler 
angles, depending on the axes along which the rotations are carried out.  The above rotation sequence 
(Z, X, and then Y) is called the (2,1,3) sequence.  For simplicity sake, in the rest of this paper we will use 
only the (2,1,3) sequence to discuss the relations between different rotation representations.  The other 
Euler conventions can be derived in a similar matter.  For a complete explanation of all the Euler 
conventions please refer to [10].  

 

Rotation Matrix  

The rotation matrix is another way to describe orientation.  Let’s use a simple 2D case to explain the 
concept.  Suppose we have a vector v0 = [1,0]

T
 and its orientation changes by an angle Ѳ: 

 

Figure 3.  2D rotation example. 

The new orientation v’ can be obtained by multiplying the vector v0 with a 2x2 rotation matrix R Ѳ: 

 

56 = 7cos ; −sin ;sin ; cos ; > 
?) = 56?@ = 7cos ; −sin ;sin ; cos ; > 710> = 7cos ;sin ;> 
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To generalize the concept to 3D, we can think of the rotation Ѳ as a rotation along the z-axis and its 3x3 
rotation matrix is 

56 = Acos ; − sin ; 0sin ; cos ; 00 0 1B 
The vector v0 = [1,0,0]

T
 after rotation becomes v’ = [cos Ѳ, sin Ѳ,0]

T
. 

 

Properties of Rotation Matrix 

Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is 
an n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1, and whose inverse 
matrix is its own transpose.  

Multiplying the inverse of a rotation matrix will reverse the rotation.  In the example of Figure 3, 

    

56C� = 56D = A cos ; sin ; 0− sin ; cos ; 00 0 1B 
?@ = 56C�?) = A cos ; sin ; 0− sin ; cos ; 00 0 1B A

cos ;sin ;0 B = A100B 
 

Euler Angles <=> Rotation Matrix 

Let’s go back to the example in Figure 2 to explain the relation between rotation matrix and Euler 
angles.  In Figure 2, each rotation (yaw, pitch, and then roll) can be written in rotation matrix form: 

5E = AcosF − sinF 0sinF cosF 00 0 1B   (yaw, rotate along z-axis) 

5G = Acos ; 0 − sin ;0 1 0sin ; 0 cos ; B   (pitch, rotate along y’’’-axis) 

5H = A1 0 00 cos I − sin I0 sinI cos I B   (roll, rotate along x’’-axis) 

 

The combined rotation matrix A is written as  J = 5H5G5E 

 

In three-dimensional space the rotation matrix is in a 3x3 form: 

J = A2�� 2�� 2��2�� 2�� 2��2�� 2�� 2��B 
Below are the elements in the A matrix, obtained by multiplying Rφ, RѲ, and Rψ: 
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K�� = cosI cosF − sinI sin ; sin F K�� = cosI sinF + sinI sin ; cosF K�� = −cos ; sinI K�� = −cos ; sinF K�� = cos ; cosF K�� = sin ; K�� = sinI cosF + cosI sin ; sin F K�� = sinI sinF − cosI sin ; cosF K�� = cos ; cos I 

 

Deriving Euler angles from rotation matrix is straightforward:  

 M = KNKOP�−K��, K��! 6 = KRSO�K��! T = KNKOP�−K��, K��! 
 

Rotation Matrix => Gravity 

We can obtain the direction of earth gravity (relative to the device coordinates) from the rotation matrix.  
Let’s revisit the example in Figure 2.  Suppose at the beginning the device coordinates are aligned with 
the world coordinates, that is, the device is placed on a flat surface with the screen facing up and the top 
pointing north (Figure 1).  In this position the device Z axis aligns with the earth gravity.  When the 
device changes its orientation with rotation matrix A, the device Z axis moves from z to z’, U′ = 	JU        

Now we need to find the gravity direction z relative to the device, i.e. in the device coordinate system.  
We know that in the device coordinate system the z’ vector is always [0,0,1]

T
.  Therefore the vector z 

can be obtained by applying the inverse of the rotation matrix, 

U = JCWU) = 	JXU) = AKWW KWP KWYKPW KPP KPYKYW KPY KYYB
X A@@WB = AKWW KPW KYWKWP KPP KYPKWY KPY KYYB A

@@WB = AKYWKYPKYYB   
In other words, the earth gravity vector in device coordinate system can be represented by the bottom 
row of the rotation matrix A. 

Quaternion 

Euler’s rotation theorem also tells us that any orientation can be expressed as a single rotation about 
some axis.  The axis is the unit vector (unique except for sign) which remains unchanged by the rotation 
(called the Euler axis).  The magnitude of the angle is unique, with its sign being determined by the sign 

of the rotation axis.  The axis can be represented as a three-dimensional unit vector , and 
the angle by a scalar α.   
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Figure 4.  Euler axis and angle. 

The Euler axis is well defined with the exception that when α=0 (if there is no rotation, any direction can 
be considered as the rotation axis).  In 1843, Sir William Hamilton introduced a similar but 
mathematically superior axial rotation representation, called the quaternion.  The quaternion is a 4-
element vector Z = ["�, "�, "�, "�\D, where 

 

"� = cos]2 

"� = ^/sin]2 

"� = ^.sin]2 

"� = ^_sin]2 

"�� + "�� + "�� + "�� = 1 

 

When α=0, Z = [1,0,0,0\D. 

Quaternion has proven a very useful representation of orientation in many applications such as 
computer graphics and gaming.  To help us understand quaternion’s relation with other orientation 
representations, let us review a few basics of Quaternion Algebra: 

The conjugate of a quaternion q is ZC� = ["�, −"�, −"�, −"�\D ,  which is the same rotation angle but 
along the opposite Euler axis.  The product of two quaternions is defined as  

 

Z ∙ a = b"@ −ZXZ "@cY + Zde 7f@a > = g 7f@a > = h"@ −"W"W "@
−"P −"Y−"Y "P"P "Y"Y −"P
"@ −"W"W "@

i hf@fWfPfY
i    

a ∙ Z = b"@ −ZXZ "@cY − Zde 7f@a > = gj 7f@a > = h"@ −"W"W "@
−"P −"Y"Y −"P"P −"Y"Y "P
"@ "W−"W "@

i hf@fWfPfY
i    

α



 Motion Sensors Introduction 

 

Version #:   

Release Date:  

 

CONFIDENTIAL & PROPRIETARY            14 of 15     

where the skew-symmetric matrix	Zd = A 0 −"Y "P"Y 0 −"W−"P "W 0 B is the matrix-vector notation for the vector 

cross product.  The quaternion matrices g and P commute, i.e. gkj = 	kjg. The matrices of the conjugate 

quaternion ZC� are transpose of  , i.e. gX and gjX. 

To represent a point z in 3D space by the quaternion, we form a 4-element vector Z = [0, z
T
]
T
.  To apply 

rotation on this vector, the quaternion rotation uses the following formula: 

 l) = Z ∙ l ∙ ZCW 

 

To apply a sequence of rotations, we can concatenate the quaternions: 

 l) = ZP ∙ �ZW ∙ l ∙ ZWCW! ∙ ZPCW = �ZP ∙ ZW! ∙ l ∙ �ZP ∙ ZW!CW 

 

Quaternion <=> Euler Angles 

The quaternion from a particular Euler sequence can be written as the product of three quaternions: 

 ZJmZH ∙ ZG ∙ ZE 

where ZE =
no
oo
pcosq�00sin q� rs

ss
t , ZG =

no
oo
pcos u�sin u�00 rs

ss
t , ZH =

no
oo
pcos v�0sin v�0 rs

ss
t.	 

 

After quaternion multiplications (details skipped here), the final quaternion is  

 

ZJ =
no
oo
oo
opcos

ϕ2 cos θ2 cosF2 − sinϕ2 sin θ2 sin F2cosϕ2 sin θ2 cosF2 − sinϕ2 cos θ2 sin F2cosϕ2 sin θ2 sin F2 + sinϕ2 cos θ2 cosF2cosϕ2 cos θ2 sinF2 + sinϕ2 sin θ2 cosF2rs
ss
ss
st
 

 

The inverse mapping (from quaternion to Euler angles) can be obtained by rearranging the equation 
above: 

 M = KNKOP�−2"�"� + 2"�"�, "�� − "�� − "�� + "��! 6 = KRSO�2"�"� + 2"�"�! 
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T = KNKOP�−2"�"� + 2"�"�, "�� − "�� − "�� + "��! 
 

Quaternion <=> Rotation Matrix 

Rotation matrix can be derived from quaternion with the following.  To rotate a vector z (whose 
quaternion representation is Z = [0, z

T
]
T
), the quaternion rotation formula is this: l) = Z ∙ l ∙ ZCW 

		70y′> = �g 70y>! ∙ ZCW 

	= gjXg 70y> 
								= bW @X@ 5 e 70y> 

 where R is the rotation matrix with   
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Rearrange the above equation and we can also compute quaternion from rotation matrix:  
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Note that the result shows two possible solutions, with one being the negative of the other.   Both q and – Z	�= [−"�, −"�, −"�, −"�\D! are valid quaternions since they represent the same orientation (-q is Euler 
axis pointing to opposite direction with (180- α) degrees of rotation). 

 

 

 


