InvenSense

Using Eclipse IDE with J-Link
debugger

Application Note for
ICM-306XX embedded

InvenSense

Table of Contents

O Y o1 i =Tt PRSP 3
P 1 i oo [N o1 o TS PSURRRRUPRPTPPRTN 3
T o (T ¢ To [U111 {1 TP PPPPPTOPPTTPPP 3
K R o] 1 e Yo T PPN 3
K 2 A o 1o LNV o TSRS PPPPPRRPPPRNt 3
T T Yo i 1Y | OSSPSRt 4
4. Software installation INSTFUCTIONScoviiiiiiiiiiee ettt s ree e s sbeeeens 5
o N B I o Q1= o U= LT PSPPI 5
o Yol 1o Y-y] PP 6
T Y=Y o Yo T) (¥ Lo Lo F USSR 7
TR - TV {1 o =T o Yo e [=Y o 0T - oY o] =T o AR 8
L R 101 o I o TN o] o] [T o SRR 8
5.2. Running the project from debUZEEr......c..vvi i 8
Table of Figures
Figure 1 — ICM30630 embedded jumper's configuration for debug.........ccccoveeieiiiiieciieeiceee e, 4
Figure 3 - Run the J-Link Flash programmer installer............cvveieoiiiiccieeeecee e 5
Figure 4 - Installing J-Link FIash programmer........c..ueeiiciiie ettt sre e s esaaee e 6
Figure 5 - Install NeW SOftWare PlUg-iNS........ccuuii ittt sre e e e sae e e s snrae e e e sneaaeeeas 6
Figure 6 - Add the GNU ARM Eclipse plug-ins archivecccueeieciiiiiiiiiieecciee e eesaee e 7
Figure 7 - Select all GNU ARM EClipSe PIUZ-INS ..cicviiiiiiiiiieiciiie ettt e s e satae e e s seaae e 7
Figure 8 - Installing GNU ARM EcClipSe PIUS-iNSuvviiiiiiiiieieiiie ettt e s vae e s e satae e e e seaeeeeas 7
= Ul el S TU 1 fo I ole Yo [N o TV i o o NP 8
Figure 10 - Debug firmware BULLON..........ovi i e e s s e e e eaaeeeas 8
FIUre 11 - DEDUEG SETEINGS ..ccuviiii ittt e e e e st e e e atae e e s stae e e eataeeeentaeeeennsaaeeaas 8
Figure 12 - AcCessing DebUE SEHHINGS ..ocvviiiiiiiie e e e e s s satae e e e ensaaeeeas 8
Figure 13 — EClipSe IDE PrOJECE VIEW ..cciiuiieiieiiiieeeciitie e ettt eeeettee s eite e e e sateeeesataeessnaaeeesnsaeeesnnsaeeesnnsseeenas 9
Figure 14 - Select the Firefly debug configurationccoooeiii e 10

Figure 15 - Running the project from debUgEer..........ccuiiiiiciii et 10

InvenSense

1. ABSTRACT

This application note describes how to set up a software-based debugging environment for the
ICM306XX eMD shield with SensorStudio using Eclipse Integrated Development Environment (IDE) and
the SEGGER J-Link debugger.

2. INTRODUCTION

The ICM306XX eMD shield used with SensorStudio is based on GCC development tools. The purpose
of this solution is to provide an easy to use environment enabling sensors management and algorithms
development. The ICM306XX eMD running through SensorStudio solution was created as an advanced
sensor hub, easy to modify and upgradable for developers. The ICM306XX eMD and SensorStudio tool
provide a full software solution allowing the end-user to develop new features and applications in
order to program their own logic.

This document describes which software packages are necessary, and provides installation and
configuration instructions for each.

Section 2 lists the software packages and hardware required. Installation process for the software
packages are provided in Section 3. The next section describes how to use the Eclipse IDE through
SensorStudio to build the project and run a debugging session.

3. PREREQUISITES
3.1. PLATFORM

The setup has been tested on a Windows 7 platform. Linux platforms are not supported in this
application note.

3.2. HARDWARE

The following hardware is required:

- Micro-USB to USB cable

- Arduino Zero board (connected to PC through USB Programming port)

- ICM306XX-eMD shield

- SEGGER J-Link Debugger

- SWD cable to connect to ICM306XX eMD shield through CN7 connector (for more information,
please refer to ICM306XX eMD shield datasheet).
The connector is sold with a white full pin (pin 7) to be use as keyed, not needed for the
ICM306XX shield, you can safely remove it.

For debugging session, please be careful to jumper’s configuration.

InvenSense

Figure 1 - ICM30630 embedded jumper's configuration for debug

On ICM306XX shield:
- JP1 connects VDD to VDDIO
- JP2 connects VDD to 3V3
- JP3isopen

On Sensor DB:
- J100 connects pin1to 2 and pin3to4

The Sensor DB is optional and adds available external sensors: magnetometer, proximity and pressure
sensor.

3.3. SOFTWARE

This section describes the software packages that are required for going through this application note.
The below packages might be used as well as newer version available after this document was written.

- The Tool Suite: SensorStudio

- The IDE : Eclipse and the following components
o Java Runtime Environment — JRE
o Eclipse Mars (the oldest version supporting GNU ARM Eclipse plug-ins is Eclipse Kepler
4.4 SR2) GNU Toolchain for ARM Embedded Processors linaro-4.7-2013 included in the
SensorStudio tool suite package
o GNU ARM Eclipse plug-ins

- The SEGGER J-Link software

InvenSense

4. SOFTWARE INSTALLATION INSTRUCTIONS
4.1. J-LINK DEBUGGER

Download the J-Link installer available here https://www.segger.com/jlink-software.html . Unzip the
setup folder and run Setup_JLink_xxxx.exe, where “xxxx” is the software version. The version package
tested during writing this document is v5.02c.

Welcome to SEGGER - J-Link
V5.02c Setup

Setup will guide you through the installation of SEGGER. -
J-Link ¥5.02c.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue.

Veeooen
SEGGER

Figure 2 - Run the J-Link Flash programmer installer

Install also USB Driver for J-Link. The default path for the J-Link software is C:\Program Files
(x86)\SEGGER\JLink_V502c. Click on Next to install the J-Link Debugger.

Installing
Flease wait while SEGGER - 1-4Link ¥5.02c is being installed. Link

Extract: JLinkRDI.dl
LA

Extract: JFlashSPILexe -
Extract: JFlashsPI_CL.exe
Extract: JLink.exe

Extract: JLinkARM.dll

Extract: JLinkConfig.exe

Extract: JLinkDLLUpdater.exe
Extract: JLinkGDBServer.exe
Extract: JLinkGDBServerCL.exe
Extract: JLinkLicenseManager.exe
Extract: JLinkRDL.dll i

< Back Mext > Cancel

m
——___———— eee—

https://www.segger.com/jlink-software.html

InvenSense

Figure 3 - Installing J-Link Flash programmer

4.2. ECLIPSE IDE

Preamble: The Eclipse Integrated Development Environment (IDE) is dependent on the Java Runtime
Environment (JRE) being installed on the machine. Both must be downloading for the same platform,
for example the Eclipse IDE x64 version needs the JRE x64 version. Make sure the correct JRE version
is installed on your system before running Eclipse installer. Otherwise you can download it here:
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html .
Download Eclipse IDE from the eclipse website https://eclipse.org/downloads/ . Please select “Eclipse
IDE for C/C++ Developers” that contains C/C+ Development Tooling (CDT) needed.

Unzip download package, and run eclipse.exe. Eclipse will ask for a folder to use for workspace location
when started.

Please follow these instructions to install Eclipse needed components for GNU ARM Eclipse plug-ins:

1. Download GNU ARM Eclipse plug-ins on website
http://sourceforge.net/projects/gnuarmeclipse/?source=typ redirect
2. Install GNU ARM Eclipse plug-ins; navigate to Help->Install New Software...

Window | Help

.£.<> - & I@f&:l Welcome

() Help Contents

%' Search
Dynamic Help
Key Assist... Ctrl+Shift+L
Tips and Tricks...

&3‘ Report Bug or Enhancement...
Cheat Sheets...

@@ Perform Setup Tasks...

“y Check for Updates

L Install New Software...

3 Installation Details

{f} Eclipse Marketplace...

& About Eclipse

Figure 4 - Install New Software plug-ins

3. Click to Add... to select GNU ARM Eclipse plug-ins. Select the Archive to directly load the zip
folder.

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://eclipse.org/downloads/
http://sourceforge.net/projects/gnuarmeclipse/?source=typ_redirect

InvenSense

= Install ;E.L]

I Available Software

Select a site or enter the location of a site,

Work with: type or select a site

Find more software by working with the "Available Software Sites” preferences.

| type filter text

Name Wersion

[7] (@) Thereis no site selected.

Figure 5 - Add the GNU ARM Eclipse plug-ins archive

4. Select all items available

Mame Version i
a (00 GNU ARM C/C++ Cross Development Tools
Lpe GNU ARM C/C++ CodeRed Debug Perspective 1.1.1.201508190739 L
Lix GMU ARM C/C++ Cross Compiler 1.141.201508190739 1
Lx GMNU ARM C/C++ Documentation (Placeholder) 11.1.201508190739
L GNU ARM C/C++ Freescale Project Templates 2.2.1.201508190739
L GNU ARM C/C++ Generic Cortex-M Project Template 1.2,5.201508190739
Lps GMU ARM C/C++ J-Link Debugging 3.2.1.201508190739
Lx GMU ARM C/C++ OpenOCD Debugging 3.21.201508190739 2
[selectAl | [Deselectal 10 items selected

Figure 6 - Select all GNU ARM Eclipse plug-ins

5. Finish the installation

@ Installing Software

P N
2 Installing 5_ o o

Downloading org.eclipse.cdt.debug.ui

[Always run in background

Run in Backgloundl [Cancel] | Details »>>

Figure 7 - Installing GNU ARM Eclipse plug-ins

You will need to restart Eclipse to taking in account the plug-ins installation.

Once these package installations completed, you can verify that the CDT and the GNU ARM Eclipse
plug-ins are correctly installed. Navigate to Help-> Installation Details. Make sure that the C/C++
Development Platform, The GNU ARM C/C++ Cross Compiler and the GNU ARM C/C++ J-Link Debugging

are installed.

4.1. SENSORSTUDIO

Please refer to SensorStudio documentation.

InvenSense

5. BUILD AND DEBUG PROJECT
5.1. BUILD THE PROJECT

To build the FireFly sample project you generated with SensorStudio, click on “Build” button on device
toolbar.

>

Figure 8 — Build code button

5.2. RUNNING THE PROJECT FROM DEBUGGER

Once you start your flow on SensorStudio, you can start the debugging session on Eclipse IDE. Your
Eclipse project is automatically generated and available. Before running the debug session, make sure
you connect the J-Link SWD connector to the ICM306XX eMD shield. Then click on “Debug” button on
SensorStudio.

Figure 9 - Debug firmware button

The first time you launch “Debug”, SensorStudio asks for the location of Eclipse and J-Link debugger:

i .
Debug settings l-i -l

Eclipse location: | C:\dev\eclipse-mars\eclipse

Eclipse found

Jlink location: C:\Program Files (x86)\SEGGER\ILink_V502f
J-Link found

oK Cancel

Figure 10 - Debug settings

These settings can be modified at any time via Device -> Debug settings... menu:

PR T N SOy e —

Fle Edit View Organize Tools Run Window Device Help

L 3 v =l (D Device information ... Ctri+Shift+1
m - D00 e]

pool % Flash device ... Ctrl+Shift+U

E' '® Build firmware ... Ctrl+Shift+C
B AlgebraMatrix-1.1.0 & Debug firmware ... Ctri+Shift+D

ik AlgebraQuaternion-1.1.0 £¥ Debug settings...
ArrayMath-1.1.0

Figure 11 - Accessing Debug settings

InvenSense

Once the settings set, the Eclipse IDE is automatically launched (this can take up to a minute on the
first launch). At the first time you start Eclipse IDE, there is a Welcome page that you can close. Now

you have the C/C++ Project view, with your project files available.

2 C/C++ - door/DoorOpeningDetection.inc - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

- ‘.‘\BVQ-M;\‘:‘%;@-ﬁgvﬁv@-‘#-g-gg-qwggQ”-‘E&IE S e -
[Project Explorer 53 E%G|& = 8 |[entyc [A DoorOpeningDetectioninc i3
4[5 door 64 * (@iparam data pointer to data event from sensor#@ (orientation)
> (= bin 65 * @param len data size of this cvent (in bytes)

o [& CustomSensorDesigner_wrap.c
> [A CustomSensorDesigner.inc
> ¢ DoorOpeningDetection_wrap.c
» ¢ DoorOpeningDetection.inc

66 =/
57° void rotation_vector_data_event(uint32.t timestamp, void* data, wintlg.t len)

assert(len == sizeof(n 5
VSsnserDataluaternien” q = (VSenserDafaQuasernien) data;

i3 entry.c
5 % Ga:ﬁsemwcwmlh // Test angle if angle is > THRESHOLD
if((((acos((float) q->w / (1L << 3@)) * 18@ / 3.14159) * 2) > DOOR_OPENING_DETECTION_THRES
[buildlog { // Restart tone only if the door open is not detected
[Firefly.lsunch
[& Makefile if (Iraising edge)

==

Quick Access

| = | T e v
820 52 D T = a
cEERY e % ¥
21 mathh
B stdboolh
stdioh
DOCR_OPENING_DETECTION_THRE
@ © acc_bias: float]]
@ ° gyr_bias: flost[]
#® ° door_open_detected : bool
i ° raising_edge: bool
@ init0: void
© ° subscribe_event() : void

= g

mm
#

N consoles to display at this time.

Writable

Figure 12 - Eclipse IDE project view

Smart Insert

. =
2 outputmap { $# (door_open_detected ==) = 3 unsubscribe_event() : void
R slo gP rotation_vector_data_event(uint32_t,
// set flag = ® ° period_event(uint32_t] : void
door_open_detected = trye; n ® © rotation_vector_period_event(uint32,
¥ =
else
{ // Reset flag
door_open_detected = falss;
} =
raising edge = Lrug;
89 /* send data event */ -
98 notify(timestamp, &door_open detected, sizeof(door_open_detected));
o [l >] [i] 4 m | r
Tasks & Console 3 ~Ei-=8

1:1

The debug session is already configured for the project in the FireFly debug configuration. The
debugger connects to the target through J-Link GDB server on the running target. To access the
predefined debug configuration you have to select it the first time you start the debugging.

Click Run->Debug Configuration... On the left side of the window, select GDB SEGGER J-Link Debugging
-> Firefly-My-Project, then Debug.

= Debug Configurations

Create, ge, and run config
e e Name: [FireflyMy-Project
It;pe filter text Main 3§§1 Debugger} =3 Starh.lp] E:/ Souroew = gummorq
B El CfC++ Application Project:
El CfC++ Attach to Application — -
E CfC++ Postmortem Debugger IM"'_P’-OJEC': E"’LI
E CfC++ Remote Application C/C++ Application:
E GDB Hardware Debugging Ih\n\My-Prn_]ect.e\f

E GDB Open0CD Debugging
-[£] GDE PyOCD Debugging
-[£] GDE QEMU Debugging

E GDB SEGGER J-Link Debugging
E Firefly-My-Project|
- Launch Group

Filter matched 11 of 11 items

Variables. ..

Saard’_Project...l Browse... |

Build (if required) before launching

Build Confiquration: IUSE Active

' Disable auto build
Configure Workspace Settings...

" Enable auto build
" Use workspace settings

=l

Rewvert Apply.

@

|

InvenSense

Figure 13 - Select the Firefly debug configuration

Now, you can see the Eclipse Debug perspective. The execution of the application can now be
controlled from the J-Link debugger in Eclipse IDE. Press Suspend/Resume button to stop/start running
the application, press Terminate button to close the debug session. You can also put breakpoints in
your code in double-click in code margin.

& Debug - tungsten_test/main.c - W=

File Edit Source Refactor MNavigate Search Project Run Window Help
- [Eiw 0 EE s S E s -0- Q- @wE P gl v e
| B | Bc/ces %y Packs (35 Debug |

#5 Debug 52 i T = O =Varisbles 53 © s egisters 5, Peripherals @) Modules = B
I 4 [E] Firefly [GDE SEGGER J-Link Debugging] £ =t B ®%|ciet <
a 2 tungsten.elf
5@ Thread #1 (Running : User Request)
sl JLinkGDBServerCL.exe
p arm-none-eabi-gdb.exe
s Semihosting and SWV

Name Type

[main.c &2 = 8 - Outline 229 Disassembly 32 = B
2@ Copyright (c) 2814-2@15 InvenSense Inc. Portions Copyright (c) 2814-2015 Moyea. All rights r¢ = Enter location here ‘ 3

12
13 extern int inv_sh_main(void); -

14 No debug context
15=int main(wvoid)

17 return inv_sh_main();

4 [I 3 14 LS

) Console 52 = Tasks [Problems) Executables [J Memory pa | = BA fﬂl | || #E--= 08
Firefly [GDB SEGGER J-Link Debugging] JLinkGDBServerCL.exe

CFEP poooeepe, CONTROL @@, FAULTMASK @8, BASEPRI ©@, PRIMASK @8 e
Reading all registers

Read 4 bytes @ address @x@@eglcsC (Data = @x1ABB637B)

Setting breakpoint @ address @x@@@8BAFE, Size = 2, BPHandle = 8x8881 -
Starting target CPU... |

4 »

Figure 14 - Running the project from debugger

