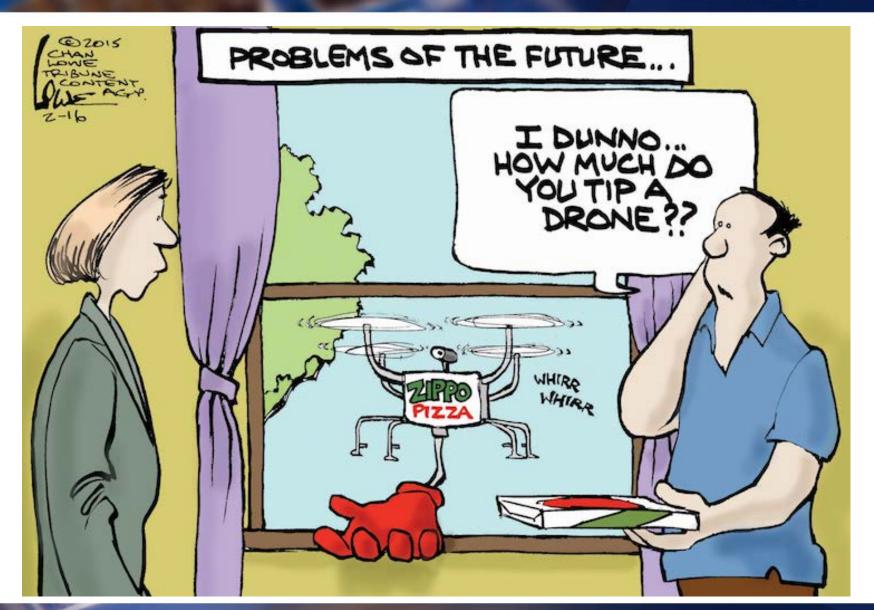
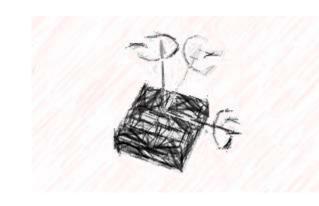


sensing the **FUTURE**



"The Drones Are Coming" - The Atlantic

Sanchayan Sinha, Dir Product Management and Drone Enthusiast



sensing the **FUTURE**

50 M Units

HIGHEST

DRONE: MARKET GROWTH

2020:0.8M

2020:1.2M

2020:9M

2020:53M

Prosumer

- DJI Phantom 4

- 4K Video w/ Gimbal
- 5350mAh
- 28 minutes flight time

2016:5M

Parrot bebop

- 1920x 1080p Video
- 2700mAh
- 25 minutes flight time

Consumer

2016:36M

- SkyViper

- 720p camera
- 650mAh
- 4 to 6 minutes

Source: Various sources/estimates

Toy

COMMERCIAL DRONES

FAA estimates 600,000 Commercial drones by 2017

"Only 320,000 airplanes are registered in the US"

- AP

COMMERCIAL DRONE MARKETS

How will drones impact business?

Predicted commercial applications and market value by industry

A

Infrastructure

Investment monitoring, maintenance, asset inventory

\$45.2bn

Agriculture

Analysis of soils and drainage, crop health assessment

\$32.4bn

Transport

Delivery of goods, medical logistics

\$13.0bn

Security

Monitoring lines and sites, proactive response

\$10.5bn

Entertainment & Media

Advertising, entertainment, aerial photography, shows and special effects

\$8.8bn

Insurance

Support in claims settlement process, fraud detection

\$6.8bn

Telecommunication

Tower maintenance, signal broadcasting

\$6.3bn


Mining

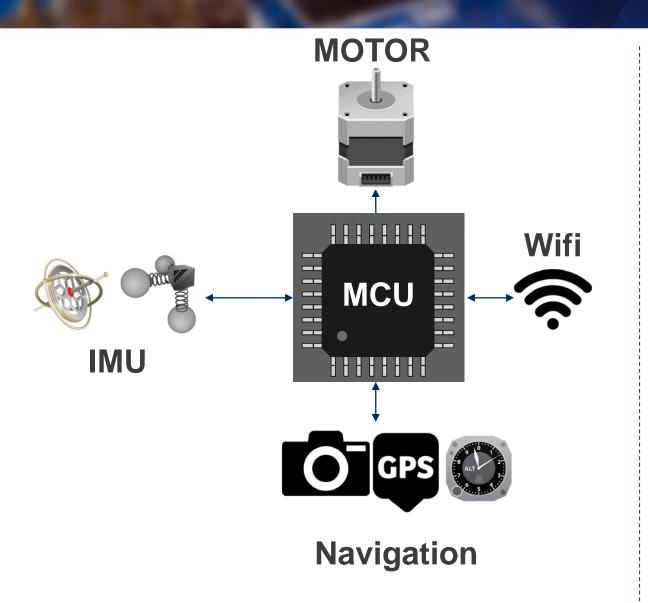
Planning, exploration, environmental impact assessment

\$4.3bn

Source: PWC, 2016

Analysis by Einstein

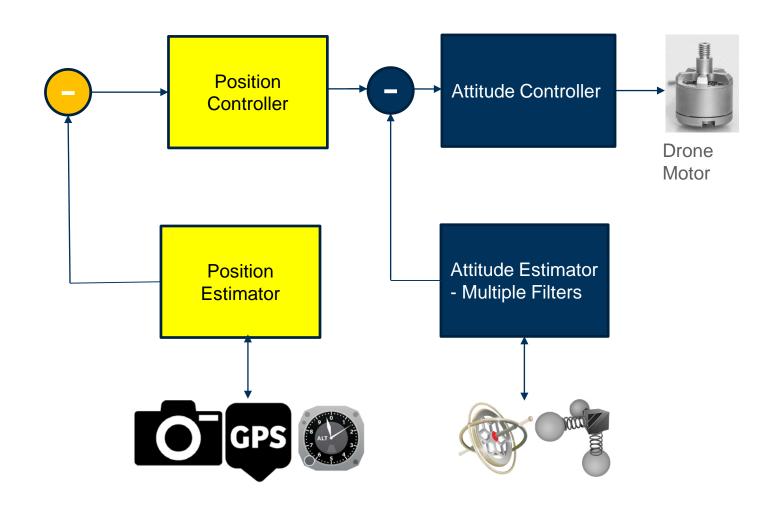
DRONE: PRINCIPAL SENSORS



	Flight Control	Navigation	Gimbal	RC
	一金子			
Prosumer	2x 6 Axis (1 1-2x Pre	1x 6 Axis	1x Mic	
Consumer	1x 6 Axis 1x Pressure 1x u-Mic	1x 6 Axis	1x 6 Axis	
Toys	1x 6 Axis			

1x Pressure

DRONE: HW ARCHITECTURE



DRONE: FLIGHT CONTROL LOOPS

DRONE: FULL STACK

Supporting Systems

- Airspace Regulation
- Design and Sim tools
- Drone marketplace
- Training

Analytics

- Vertical specific insights
- Machine Learning

Image Processing

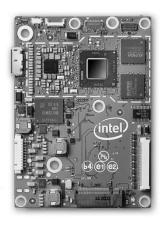
- 3D Models
- Computer Vision

Control and Image Capture

- Flight Controller/OS
- Mission and flight planning
- Fleet Management

Drone Platform

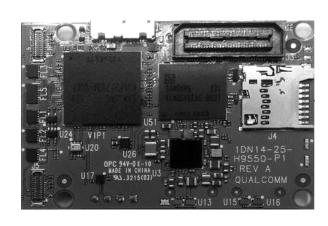
- Airframe Manufacturer
- Drone Packaging


Hardware Components

- Vision/Cameras
- Power/Propulsion Systems
- Sensors

Source: http://www.balderton.com/news/a-primer-on-drones-and-uavs-part-1

HOW TO BUILD A DRONE : FC (1/2)



INTEL AERO


PIXHAWK

QUALCOMM FLIGHT

DJI A3/A3PRO & GPS-COMPASS

NAZE32

CC3D

HOW TO BUILD A DRONE: FC (2/2)

Flight controller	Features			
0000	STM32 32-bit MCU at 90MIPs with 128KB Flash and 20KB RAM			
CC3D	6-axis MEMs gyros and accelerometer			
NAZE32	32-bit processor running at 72MHz			
NA. 14:30/:: 1 :4 - 3//4 O	FTDI/UART TTL socket for debug, upload firmware or LCD display			
	I2C socket for extend sensor			
MultiWii Lite V1.0	Separate 3.3V and 5V LDO voltage regulator			
	MPU6050 6 axis gyro/accel			
	Advanced Attitude Stabilize Algorithm			
	Intelligent Orientation Control (IOC)			
DJI Naza-M Lite	Built-in Gimbal Stabilization Function			
	Multiple Flight Control Mode/Intelligent Switching			
	Support Futaba S-Bus and PPM Receiver			
	Fully Autonomous Operations when using GPS			
3DR Pixhawk	Mission Planner Ground Station			
	Safety Fail safes			

HOW TO BUILD A DRONE : AIRFRAME sensing the FUTURE

HEXACOPTER

QUADCOPTER

OCTACOPTER

HOW TO BUILD A DRONE: PROPELLER ensing the

- Key criteria :
 - Length & Pitch
- Shorter Pitch → Higher Torque
- Longer Pitch → Higher Speed
- Longer Props → Better Efficiency

Tip: For racing drones pick a small motor and small pitch

HOW TO BUILD A DRONE: BATTERY

- Key Criteria :
 - Max continuous Current draw = Battery
 Capacity (Ah) x Discharge rate (C)
- Higher discharge rate → Faster rotor speeds
- Higher discharge rate → Shorter Flight Time
- Larger batteries → Increased Weight
- Tip: Pick one with high C and over 3000mAh

Source: Google Images

HOW TO BUILD A DRONE: MOTOR

- Sizing a motor
 - Calculate Weight (W) of Multi-copter
 - Thrust = $2 \times W$
 - Thrust per Motor = (2 x W)/4
 - Checkout Thrust tables of motor, to pick the right one

BRUSHLESS DC MOTOR

	voltage (V)	Paddle size	current (A)	thrust (G)	power (W)	efficiency (G/W)	speed (RPM)
	8	Carbon Fibre Prop 6x3	6.4	240	51.2	4.7	11910
12	40	Carbon Fibre Prop 5x3	7.5	310	90.0	3.4	20100
	12	Carbon Fibre Prop 6x3	11.5	440	138.0	3.2	16300

WHAT CAN YOU BUILD: SOME IDEAS sensing the FUTURE

- 1. Build a differentiated FC with better CPU + Sensor
- 2. Build an outdoor navigational unit for one of the FC's
- Build a temperature/vibration controlled IMU
- 4. Build a gesture controller to replace a RC
- 5. Build an anti-collision kit for one of the FC's

https://www.invensense.com/solutions/drones/

