sensing the EUTOR

InvenSense Developers Conference 2016

Motion Sensor Technology and Applications Overview

Vishal Markandey, Sr. Marketing Manager

Motion Sensors

Six-Axis Motion Device

Sensor + Processor Core

Motion Sensor Applications

sensing the

Application: Health/Fitness Tracker

InvenSense

Application: Navigation

- Outdoor Navigation:
 - GPS + Compass is common (<10m accuracy)
 - 9-axis helps in urban canyon environments
- Indoor Navigation:
 - No GPS, WiFi triangulation for 10-30m accuracy
 - 9-axis provides 1-10 meter accuracy
 - Pressure Sensor: Which floor?

Application: AR/VR Gaming

sensing the **FUTURE**

All-in-One HMD

Mobile AR/VR Gaming

- <u>High performance</u> Gyroscope is important for AR/VR
 - Key specs: Gyro Noise, Gyro Offset, and Gyro Sensitivity
 - <u>User Experience</u>: Orientation stays fixed to the real world so that Pokeman stays in same location even after user hand jitter
 - Mobile gets hot because GPS, AP/Graphics, Display and Gyro on 100%
 - Stable gyroscope performance over temperature is critical
 - <u>User Experience:</u> Pokeman won't drift over camera scene as mobile temp increases

Gyroscope

MEMS Gyroscope

sensing the **FUTURE**

MEMS Gyroscopes use Coriolis Effect to measure Angular Rate

- Mass m is moving with velocity \mathbf{v} and Angular velocity $\mathbf{\Omega}$ is applied to m
- Resulting force $\mathbf{F} = -2m\mathbf{\Omega} \times \mathbf{v}$ (called Coriolis force) causes object displacement
- Ω can be calculated from the measured displacement
- Displacement is measured via capacitive change between the moving mass v. fixed structure
- In practice 2 masses moving in opposite directions are used
 - Resulting Coriolis forces are in opposite directions
 - Differential capacitance between the two masses used to measure Ω
 - If linear force is applied the two masses move in the same direction and differential capacitance is zeromakes gyroscope robust to linear acceleration

MEMS Gyroscope 3-Axis

sensing the **FUTURE**

InvenSense MEMS Gyroscopes

- X-axis and Y-axis Gyroscopes: Masses move up and down (perpendicular to package plane) resulting in in-plane Coriolis forces for X and Y rotation
- X-axis and Y-axis Gyroscope are basically the same structure mounted 90° from each other as shown in Figure B
- Z-axis Gyroscope: Masses move in-plane as shown in Figure C

Key Gyroscope Parameters

Sensitivity

- Gyroscope output change when subject to 1 dps or deg/sec
- ADC word of 16-bits, number of possible output levels 2¹⁶
- With a Full Scale Range (FSR) ±250 °/sec, sensitivity scale factor is 2¹⁶/(±250) = 131 levels (or LSBs)/dps
- Bias & Variation over Temperature
 - Ideally at zero at rest, but in reality is non-zero, affected by temperature
 - Called Zero-Rate Output (ZRO) and expressed in deg/sec (dps)
- Noise
 - Random low rate change at rest due to-
 - Mechanical non-linearity
 - White noise from CMOS
 - Measured rate (density) & RMS
 - Seen as drift when integrated over time

sensing the

FUT

Accelerometer

MEMS Accelerometer Basics

MEMS Accelerometer

- Suspended proof mass **m** reacts to acceleration in its axis of orientation by moving
- Movement changes capacitance C between the mass and its sense electronics
- Capacitance converted to voltage & digitized to provide a measure of acceleration

Key Accelerometer Parameters

Sensitivity

- Accelerometer output change when subject to 1g
- ADC word of 16-bits, number of possible output levels 2¹⁶
- With a Full Scale Range (FSR) $\pm 2g$, sensitivity scale factor is $2^{16}/(\pm 2) = 16,384$ levels (or LSBs)/g
- Bias & Variation over Temperature
 - Ideally at zero at rest, but in reality is non-zero, affected by temperature
 - Called Zero-G Output (ZGO) and expressed in mg
 - Ideal output for X, Y, Zaccel at zero is 0, 0, 1g

Noise

- Random low rate change at rest due to-
 - Mechanical non-linearity
 - White noise from CMOS
- Measured rate (density) & RMS
- Seen as drift when integrated over time

sensing the

FUTU

Compass

Compass Basics

sensing the **FUTURE**

Hall Effect

- Occurs when a magnetic field is applied transverse to flowing current
- Magnetic field deflects the charges that make up the current, inducing a voltage (called Hall Voltage)
- Hall voltage can be measured to determine the strength of magnetic field transverse to the current
- Use multiple sensors oriented in different directions to measure total magnetic field

Features of device

- Using Hall elements as magnetic sensor
 - Wide range of magnetic sensing: $\pm 4900 \mu T$
 - Excellent linearity
 - Reset operation is not necessary against exposure of strong magnetic field.

Si monolithic structure

- 3-axis magnetic sensor and ASIC are integrated into one chip Si-monolithic IC
- Small, thin and simple structure
- Higher-order orthogonal 3-axis sensing of magnetic field

Having above features, AKM's e-compass is most suitable for various mobile devices.

Pressure Sensor

Pressure Sensor Use Cases

sensing the **FUTURE**

Absolute Height

Indoor Navigation

Fitness

Context

Pressure Sensor MEMS Structure

- The barometer measures change in pressure, not altitude
- Composed of a diaphragm, exposed to the external environment.
- Underneath the diaphragm are electrodes on the CMOS
- Diaphragm deflection is a function of the external pressure
- CMOS electrodes measure the change in vertical gap (capacitance) due to deflection of the diaphragm

- Absolute Accuracy:
 - The difference in measured pressure from the actual pressure
- Relative Accuracy:
 - Relative difference between absolute pressure measurements at two different locations, a measurement of pressure change
 - Used to track altitude change for tracking vertical motion

Pressure Measurement Principle

Strain measurement with **piezoresistors**

Measurement of Capacitance

Advantages of capacitive sensors over current state of the art resistive ones:

- Low power consumption: No current flow when measuring capacitance
- Best temperature stability: Piezoresistors are highly sensitive to temperature
- Low noise: Thermal noise of piezoresistors fundamentally limits repeatability at output
- High accuracy: Capacitive principle more sensitive to pressure changes

Pressure Change: Stair Step Detection

Correctly classified: 94%

InvenSense Pressure Sensor tracking steps up and down

Motion Sensor Devices

MotionTracking Solution

sensing the

- Sensors calibrated as a complete system for best performance
- Optimized *MotionFusion* software for guaranteed performance
- Smallest board space, low power
- Less components and fewer vendors to qualify
- Higher system reliability

6-Axis and 9-Axis Products

Device	Highlights	Mobile	Sports	AR/VR	Wear	Image	ΙοΤ
ICM-20648	4K FIFO + DMP	~			\checkmark		\checkmark
ICM-20649	±4000dps, ±32g		✓				
ICM-20948	9-axis, ±2Kdps, ±16g				✓		~
ICM- 20600/2	2.5x3mm; 3x3mm	~		✓	\checkmark		~
ICM-20603	3x3mm w/ HMD/VR SW			✓			
ICM-20690	Dual Interface; Wide FSR	✓				✓	

Motion Sensors Output

Thank You

