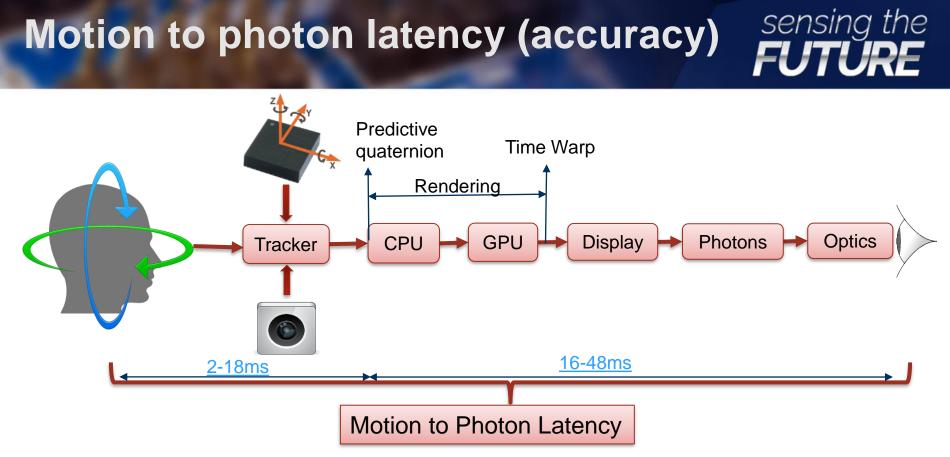
sensing the FUTURE

InvenSense Developers Conference 2016

VR/HMD System



- Motion of Eye relative to Head: Caused by discrete nature of HMD display compared to real world which is continuous. Reduces visual quality considerably, and introduces a choppiness that can be fatiguing and may contribute to motion sickness [1][2]. There are many artifacts that arise due to this which is known as Judder, strobe
 - Solution: Low persistent display and higher frame rate
- Motion to photon Latency: Time it takes from actual movement to time the display reaches eyes. [2] The effect of this is difference in the image person is expecting to what is displayed. This causes disorientation and nausea attributing to yet again motion sickness.
 - Solution: Higher frame rate, lower latency in Motion detection, Time warping and predictive quaternion and fusion with translation detection.

Motion to photon latency (accuracy)

- Motion to photon Latency: [2] Difference in person's expectation to what is displayed
 - **Issue:** Disorientation and nausea attributing to motion sickness
 - Solutions: ٠
 - Lower latency in Motion detection & fusion
 - Time warping use case
 - Predictive quaternion
 - Higher frame rate (Faster rendering)
 - OLED display for faster refresh rate
 - Accurate motion estimation (6 DOF = 3DOF \rightarrow Orientation, 3DOF \rightarrow Translation)

ICM-20603

Integration and Demonstration on the ST-Nucleo platform

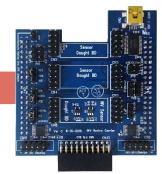
Goals of this presentation?

- Introduce the ICM-20603 Hardware development kit -
- Present the proposed Software stack and its capabilities -
- Demonstrate how to integrate the driver in an embedded platform -
- Showcase the capabilities with live demo -

Hardware Overview

Hardware Overview Invensense 20603 Reference Kit

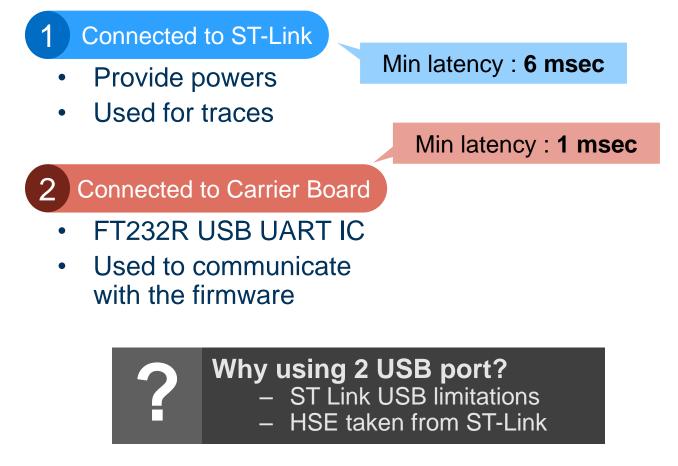
sensing the **FUTURE**


ST Nucleo F411-RE

512 KB Flash 128 KB RAM Cortex-M4 MCU

Invensense Carrier Board

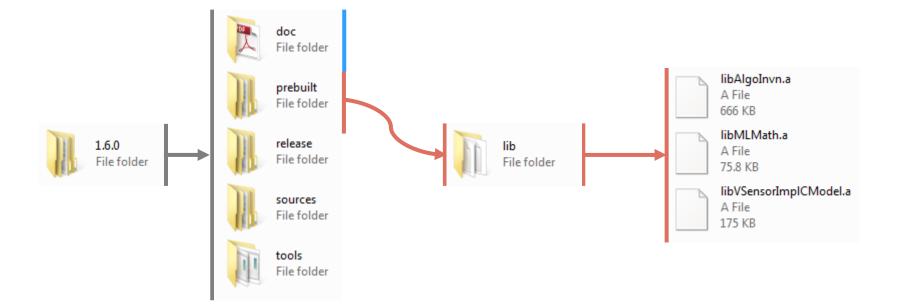
ICM-20603 Daughter Board

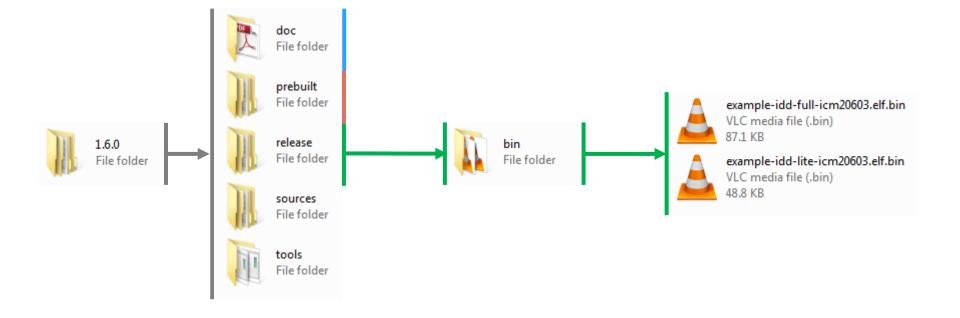


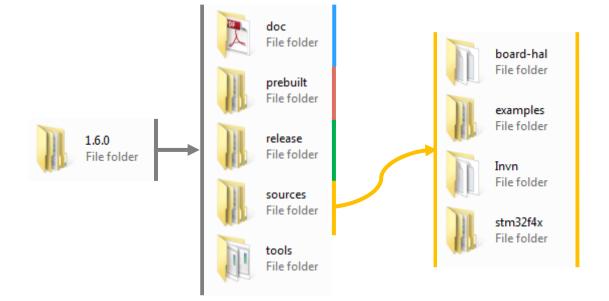
Hardware Overview Connection to PC

sensing the **FUTURE**

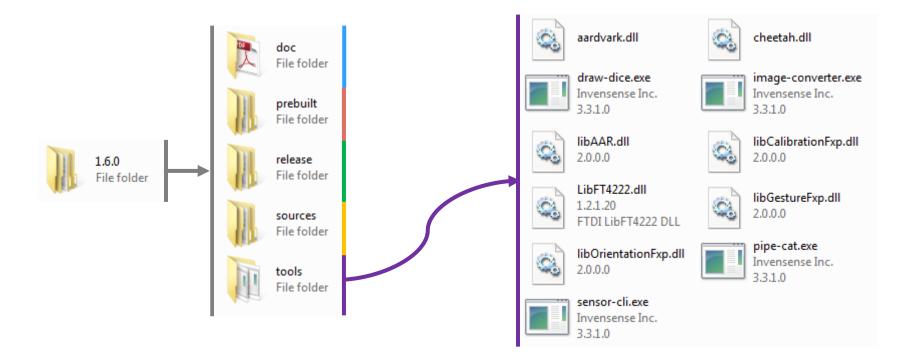
Requires 2 USB 2.0 Cables - A-Male to Mini-B


Software Overview

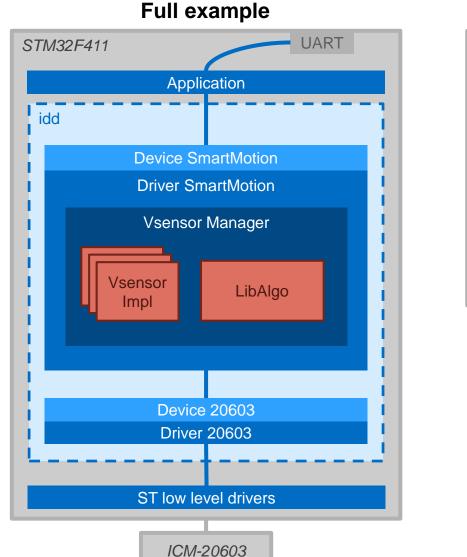

sensing the **FUTURE**



sensing the **FUTURE**



sensing the **FUTURE**





- <u>IDD</u> : <u>Invensense</u> <u>Device</u> <u>Driver</u>
 - Driver layer : device specific layer (doesn't include transport)
 - *Device* layer : a common API across all Invensense chips
- 2 packages available
 - Full : provides all features with algorithms running within the driver.
 - Lite : showcases the integration of the driver only with algorithms running on the application

Software Overview Architecture : Full vs Lite

sensing the **FUTURE**

Source code is open

Source code is closed

sensing the **FUTURE**

Raw Accelerometer

- Accelerometer
- Raw Gyroscope
- Gyroscope
- Uncal Gyroscope
- Raw Temperature
- Raw Magnetometer
- Magnetometer
- Uncal Magnetometer
- Gravity
- Linear Acceleration
- Game Rotation Vector
- Geomag Rotation Vector
- Rotation Vector
- Orientation

- Raw: Raw data from sensors (no unit)
- **Calibrated** : Processed data, including bias correction, expressed in
 - · 'g' for Accelerometer
 - 'dps' for Gyroscope
 - 'uT' for Magnetometer
- **Uncalibrated :** Processed data with bias reported next to the data

$$uncal \begin{pmatrix} x \\ y \\ z \end{pmatrix} - bias \begin{pmatrix} x \\ y \\ z \end{pmatrix} = cal \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

sensing the **FUTURE**

Raw Accelerometer

Accelerometer

Raw Gyroscope

Gyroscope

Uncal Gyroscope

Raw Temperature

Raw Magnetometer

Magnetometer

Uncal Magnetometer

Gravity

Linear Acceleration

Game Rotation Vector

Geomag Rotation Vector

Rotation Vector

Orientation

Gyroscope calibration:

- Requires the device to remain static for 2 to 3 seconds
- \Rightarrow Accelerometer and Magnetometer calibrations leverages *Gyroscope* data to achieve *on-head* calibration.

Accelerometer calibration :

- Requires user to look naturally in different direction (no specific order):
 - Look down, up, left, right, tilt head left, right
 - Each position shall be maintained 1 to 2 seconds

Magnetometer calibration :

- Šimilar as Accelerometer calibration requirements except that holding position is not necessary
- Magnetometer is usually calibrated while doing the Accelerometer calibration sequence.

This calibration can be stored and reloaded at boot time. Only differential error will be calibrated.

sensing the

Raw Accelerometer

- Accelerometer
- Raw Gyroscope
- Gyroscope
- **Uncal Gyroscope**
- **Raw Temperature**
- **Raw Magnetometer**
- Magnetometer
- **Uncal Magnetometer**
- Gravity
- **Linear Acceleration**
- Game Rotation Vector
- Geomag Rotation Vector
- **Rotation Vector**

Orientation

Game Rotation Vector (GRV, 6-axis fusion)

- Accelerometer and Gyroscope based quaternion
- Low latency

Geomag Rotation Vector (GeoRV)

- Accelerometer and Magnetometer based quaternion
- High latency: convergence time is longer (~5 seconds)

Rotation Vector (RV, 9-axis fusion)

- Accelerometer, Gyroscope and Magnetometer based quaternion
- Low latency

Orientation

- Rotation Vector quaternion translated into Euler angles
 - Yaw
 - Pitch
 - Roll

sensing the

Raw Accelerometer

Accelerometer

- Raw Gyroscope
- Gyroscope
- Uncal Gyroscope
- Raw Temperature
- Raw Magnetometer
- Magnetometer
- Uncal Magnetometer
- Gravity
- Linear Acceleration
- Game Rotation Vector
- Geomag Rotation Vector
- **Rotation Vector**
- Orientation

Gravity

- reports the direction and magnitude of gravity
- When the device is at rest, Gravity output is identical to Accelerometer output

Linear Acceleration

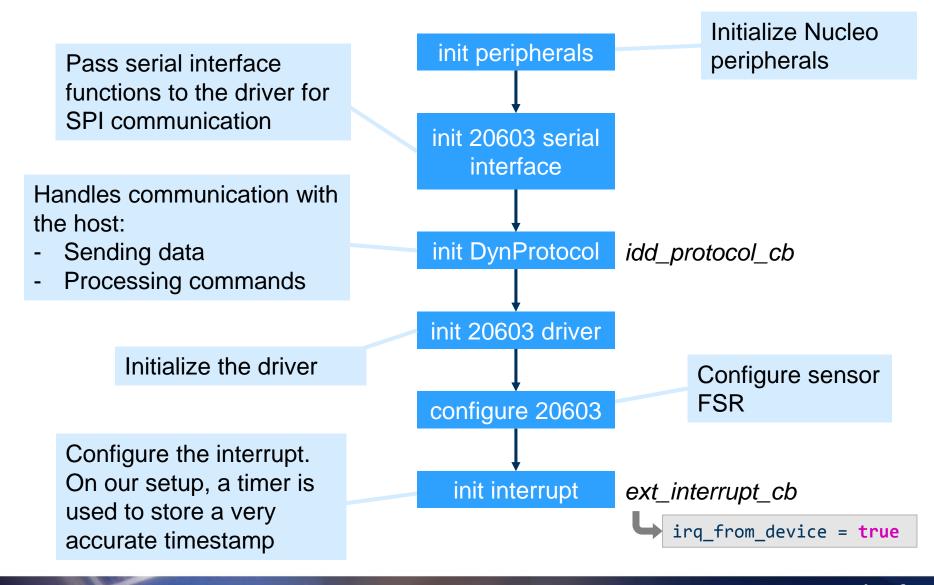
- Reports the linear acceleration of the device, not including the gravity
- When the device is immobile, the output should be close to 0 on all three axis.

Software Overview *Frequencies and MIPS consideration*

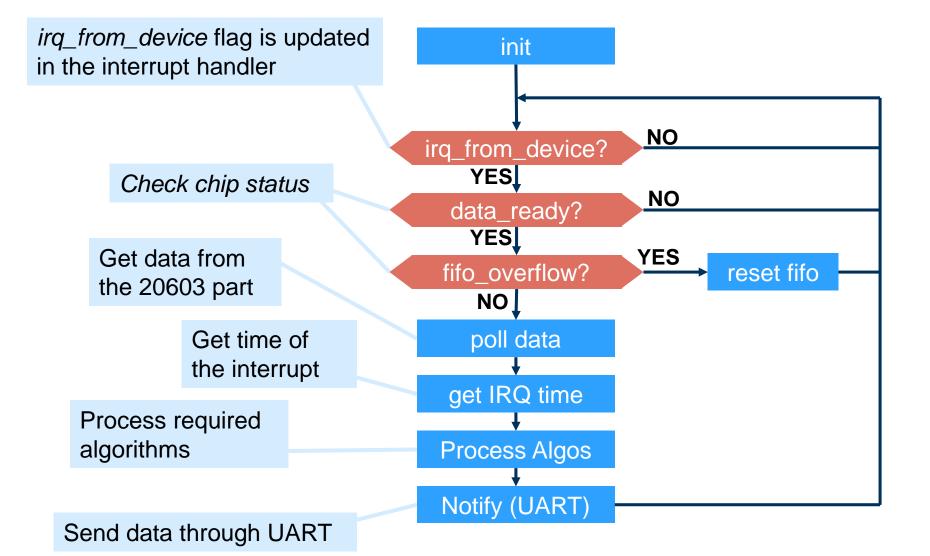
sensing the **FUTURE**

Sensor		ted freq Iz) Max	Need Accel	Need Gyro	DMIPS @ 1KHz
Raw Accelerometer	4	1000	Yes	No	2.52
Accelerometer	50	1000	Yes	Yes	6.44
Raw Gyroscope	4	1000	No	Yes	2.60
Gyroscope	50	1000	No	Yes	3.49
Uncal Gyroscope	50	1000	No	Yes	3.36
Raw Temperature	4	1000	No	No	-
Raw Magnetometer	4	100	No	No	1.73
Magnetometer	50	100	No	Yes	7.70
Uncal Magnetometer	50	100	No	Yes	7.58
Gravity	50	1000	Yes	Yes	12.90
Linear Acceleration	50	1000	Yes	Yes	13.13
Game Rotation Vector	50	1000	Yes	Yes	12.54
Geomag Rotation Vector	50	100	Yes	No	23.80
Rotation Vector	50	1000	Yes	Yes	38.17
Orientation	50	1000	Yes	Yes	38.91

MIPS value are for one sensor enabled alone. Combination of sensors is not necessarily the addition of both.


Software Overview Code size consideration

Blocks	FULL 20603 (KB)		LITE :	LITE 20603 (KB)		
	in flash	in RAM	in flash	in RAM		
TOTAL	69.38	28.68	49.06	23.15		
Application	14.84	11.99	30.78	10.65		
Low level drivers	12.92	10.01	9.05	10.01		
Lib IDD	41.54	4.68	9.14	0.49		
Device 20603	2.52		-			
Driver 20603	9.77		6.53			
Device SmartMotion	26.63		-			
VSensorFlow	19.56		-			
VSensorMgr	0.78		-			
VSensorImpl	6.24		-			
Algos LibExport	12.54		12.0	1		
Lib Math	1.14		1.14			
Lib Algolnvn	11.4	0	1	0.87		
	11.40		10.87			


- The algo library is included within the application for the LITE example
- The 20603 driver for the LITE example doesn't include all features (for instance, Self-test API are not provided)

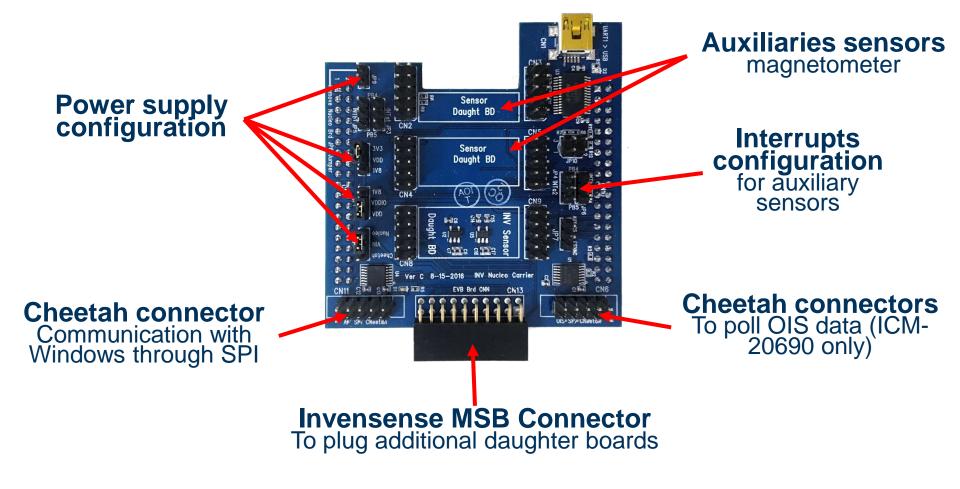
Software Overview Lite example : Initialization stage

Software Overview Lite example : Polling data and processing

InvenSense Developers Confere

sensing the **FUTURE**

Demonstration


Thank You

Hardware Overview Carrier Board description

sensing the **FUTURE**

 Additional options offered by the CB (for reference only, will not be covered by this presentation)

