HUMANIZING THE DIGITAL EXPERIENCE
TDK Developers Conference 2018
CORONA Motion Sensor Technology, Products & Applications

Vishal Markandey, Senior Manager Technical Marketing, InvenSense
Jim Lin, Senior Software Manager, InvenSense
Welcome!!

TDK Developer’s Conference Develop Track

Goal: Introduce customers the Corona product line—TDK InvenSense Next Generation Motion Sensors
ICM-426xx CORONA_{XLII}: Premium Motion Sensors

Leading OIS performance
due to low gyro/accel noise & sensitivity error, high temp stability, sample synch

Performance Leadership
Unparalleled 6-axis Motion Sensor noise/sensitivity/stability

Triple interface supports dual OIS
2 cameras for sharper images or clearer selfies (independent or fully synchronized)

Low-light video stabilization
Sample synchronization enables higher frame rates and extended shutter times

Concurrent Sensor Usage
due to superior vibration rejection and separate signal path conditioning

High fidelity AR/VR performance
due to extended measurement range & resolution, plus high temp stability
Agenda

• Introductions to TDK-InvenSense Motion
 ¬ Basics of Motion Technology
 ¬ Applications of Motion
 ¬ TDK-InvenSense Product Offerings

• The Corona XLII Motion Sensors
 ¬ Target Improvements
 ¬ Product Specifications

• SmartMotion Evaluation Kits
 ¬ Quick introduction to SmartMotion
 ¬ Evaluating Corona with MotionLink
 ¬ The DK-42605

• Wrap up
 ¬ Important Links to Support and further Information
 ¬ Q and A

Presenters –

Vishal Markandey
Sr. Technical Marketing Manager, Motion Sensors
vmarkandey@invensense.com

Jim Lin
Sr. SW FAE Manager for North America
jlin@invensense.com
What is Motion?

- Motion is full 6 degrees of freedom (DOF) processing that can precisely translate human motion for various applications

- Requires Gyroscopes and Accelerometers
Sensors Summary

Gyroscope
- Measures rate of angular rotation (dps)
- Gyroscope full scale range typically goes up to ±2000 dps

Accelerometer
- Measure acceleration or change in linear velocity
- Measured in g or in m/s² (1g = 9.81 m/s²)
- Accelerometer full scale range typically goes up to ±16g

Compass
- Measures magnetic fields
- Prone to magnetic disturbance

Pressure
- Measures atmospheric air pressure
- Prone to air and temperature disturbance
Gyrosopes & Accelerometers – Critical Device Specs

- **Offset**
 - The gyro output for zero rate input rotation (device not moving) and the accel output value for zero-g input acceleration at nominal Vdd and temperature.

- **Full-Scale Range**
 - This parameter defines the measurement range of the gyroscope in degrees per second (dps) and accelerometer in (g).
 - When the applied angular velocity and the applied linear acceleration is beyond the full-scale range, the gyroscope and accel output signal will be saturated.

- **Offset vs. Temperature**
 - The maximum change in the gyro and accel offset over the full operating temperature range (Typically -40 deg C to +85 deg C).
 - The closer to zero and the more linear, the better.

- **Sensitivity**
 - Gyroscope: The output change per unit of input rotation at nominal Vdd and temperature, measured in LSB/deg/sec.
 - Accelerometer: The output change per unit of input acceleration at nominal Vdd and temperature, measured in LSB/g.

- **Noise Density**
 - When multiplied by the square root of the measurement bandwidth, this value will give the rms noise of the sensor at nominal Vdd and temperature.
 - Rotations and accelerations below this value will not be resolvable.
MEMS Motion Applications

- Auto & Industrial
- Virtual Reality
- Location & Activity Tracking
- Wearable
- Image Stabilization
- Appliances
- Sports & Fitness
- Smart TV
- Tablets
- Toys
- Smart Phones
- Gaming
- Imaging

Internet of Sensors
Motion Sensor Product Portfolio

<table>
<thead>
<tr>
<th>Motion, Pressure & Combo Sensors</th>
<th>Current Channel Products</th>
<th>Upcoming Corona XLII Offerings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM-20690</td>
<td>ICM-20648</td>
<td>ICM-42605</td>
</tr>
<tr>
<td>• Dual-Interface: 6-axis UI+OIS</td>
<td>• 6-axis (w/sensor fusion)</td>
<td>• Next Gen 6-Axis Flagship</td>
</tr>
<tr>
<td>• 2.5x3x0.9mm</td>
<td>• 3x3x0.9mm</td>
<td>• Further improved Gyro/Accel performance</td>
</tr>
<tr>
<td>• in MP</td>
<td>• in MP</td>
<td>• I3C Support</td>
</tr>
<tr>
<td>• Smartphones, Imaging</td>
<td>• IoT/Wearables</td>
<td>• APEX Motion Engine</td>
</tr>
<tr>
<td>ICM-20602</td>
<td>ICM-20948</td>
<td>ICM-42686</td>
</tr>
<tr>
<td>• Single-Interface: 6-axis UI</td>
<td>• 9-axis (w/compass)</td>
<td>• Highest range Gyro/Accel</td>
</tr>
<tr>
<td>• 3x3x0.75mm</td>
<td>• 3x3x1mm</td>
<td>• Further improved Gyro/Accel performance</td>
</tr>
<tr>
<td>• in MP</td>
<td>• in MP</td>
<td>• 18-bits(Accel),19-bits (Gyro) output option</td>
</tr>
<tr>
<td>• VR/Game controllers</td>
<td>• Navigation, IoT</td>
<td>• I3C Support</td>
</tr>
<tr>
<td>ICM-20600</td>
<td>ICM-20789</td>
<td>ICM-42688</td>
</tr>
<tr>
<td>• Single-Interface: 6-axis UI</td>
<td>• 7-axis (w/pressure sensor)</td>
<td>• Highest precision Gyro/Accel</td>
</tr>
<tr>
<td>• 2.5x3x0.91mm</td>
<td>• 4x4x1.365mm</td>
<td>• Further improved Gyro/Accel performance</td>
</tr>
<tr>
<td>• in MP</td>
<td>• in MP</td>
<td>• 18-bits(Accel),19-bits (Gyro) output option</td>
</tr>
<tr>
<td>• Smartphones</td>
<td>• Wearables, Drones, IoT</td>
<td>• I3C Support</td>
</tr>
<tr>
<td>ICP-101xy</td>
<td>ICM-20600</td>
<td>ICM-42688</td>
</tr>
<tr>
<td>• 1-Axis pressure</td>
<td>• 2.5x3x0.91mm</td>
<td>• Highest precision Gyro/Accel</td>
</tr>
<tr>
<td>• 2x2x0.72mm</td>
<td>• in MP</td>
<td>• Further improved Gyro/Accel performance</td>
</tr>
<tr>
<td>• in MP</td>
<td>• Smartphones, Drones, IoT</td>
<td>• 18-bits(Accel),19-bits (Gyro) output option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• APEX Motion Engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RTC Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2.5x3x0.9mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MP: 1H 2019</td>
</tr>
</tbody>
</table>

Note: Color coded chips are from the same product family. 2.5x3mm packages are pin & register compatible; different packages are register compatible.
Navigation
Navigation

Outdoor Navigation:
- GPS + Compass is common (<10m accuracy)
- Motion Sensors help when GPS is lost

Indoor Navigation:
- No GPS, WiFi triangulation for 10-30m accuracy
- Motion Sensors provide 1-10 meter accuracy
- Pressure Sensor: Which floor?
Navigation Errors from Sensor Specs

- Relative contributions from various Sensor Specs to Navigation Errors
 - Accel and Gyro Offset are biggest error contributors in this example
 - Important to compensate for offset in system

<table>
<thead>
<tr>
<th>Sensor Spec</th>
<th>Example Spec Value</th>
<th>Velocity Error</th>
<th>Position Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accel Offset</td>
<td>40mg</td>
<td>3.92m/s</td>
<td>19.6m</td>
</tr>
<tr>
<td>Accel Sensitivity</td>
<td>1%</td>
<td>0.98m/s</td>
<td>4.9m</td>
</tr>
<tr>
<td>Accel Noise</td>
<td>0.75mg-rms</td>
<td>0.074m/s</td>
<td>0.37m</td>
</tr>
<tr>
<td>Gyro Offset</td>
<td>0.5dps</td>
<td>4.28m/s</td>
<td>14.3m</td>
</tr>
<tr>
<td>Gyro Sensitivity</td>
<td>0.5%</td>
<td>2.6m/s</td>
<td>8.6m</td>
</tr>
<tr>
<td>Gyro Noise</td>
<td>0.038dps-rms</td>
<td>0.32m</td>
<td>1.08m</td>
</tr>
</tbody>
</table>
Navigation Error Example

- Gyro bias temperature stability: 0.05dps/°C (BMI160)
- Temperature change of 1°C on entering 4km tunnel
- No GPS in tunnel to correct navigation errors
- Driving speed: 60km/hr
- Driving time in tunnel: 240sec
- Max error due to gyro bias temp stability: 0.05*240 = 12°
- Position Error: 4km*tan(12°) = 850m
- If Gyro bias temperature stability: 0.01dps/°C (ICM-426xx)
 - Max angle error: 2.4°
 - Position Error: 4km*tan(2.4°) = 168m
HMD & AR/VR
HMD & AR/VR

HMD & Controller

- HMD & Controller may require different capabilities from motion sensors
- Controller may require fast motion detection (high FSR such as ±4000dps) for high speed games

Mobile AR/VR Gaming

- Mobile gets hot because GPS, AP/Graphics, Display on 100%
- Stable gyroscope performance over temperature is critical
- **User Experience:** Objects won’t drift over camera scene as temperature increases
Impact of Gyro Temp Drift

Two Smartphones with identical PCB:
- P10 above with TDK ICM-20690
- P10+ below with ST LSM6DSM

Drift test proves poor temperature offset stability of ST Gyro which shows significant drift of the entire image.
CORONA ICM-42686: Designed for VR Controllers

- Fast movement easily creates acceleration >16g
 Traditional 6-axis saturate and the game is over

- Fast movement easily creates rotation >2000dps
 Traditional 6-axis saturate and the game is over
Gyroscope Noise Error

- Gyroscope Noise is another source of angle error

Theory: Angle error (°) = Time (s) x Noise (dps-rms)

Use Case: Assuming video watching of 2 minutes

\[
\text{Angle error (°)} = 2 \times 60 \text{ (s)} \times \text{Noise (dps-rms)}
\]

BMI055

<table>
<thead>
<tr>
<th>Spec (dps-rms)</th>
<th>Error (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>12</td>
</tr>
</tbody>
</table>

ICM-42688

<table>
<thead>
<tr>
<th>Spec (dps-rms)</th>
<th>Error (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.028</td>
<td>3.4</td>
</tr>
</tbody>
</table>

- Angle error from Gyroscope Noise is 3.5 times smaller with *TDK ICM-42688*
Accelerometer Nonlinearity Error

- Non-linearity is defined as the maximum deviation of the output response from a best fit line (-range to +range) expressed as a percentage of Full Scale Output (FSO)

- Accel Nonlinearity errors will introduce position estimation errors

Theory: Position error (m) = \(\frac{1}{2} \times \text{acceleration (m/s}^2) \times \text{Nonlinearity} \times \text{time(s)}^2 \)

Use Case: Assuming tracking VR Controller position for 2 sec.

Position error (m) = \(\frac{1}{2} \times 9.8(\text{m/s}^2) \times \text{Nonlinearity} \times 4 \)

<table>
<thead>
<tr>
<th>BMI055</th>
<th>ICM-42688</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec (%FS)</td>
<td>Error (cm)</td>
</tr>
<tr>
<td>0.5</td>
<td>9.8</td>
</tr>
</tbody>
</table>

- Position error from Accel Nonlinearity is 5x lower with TDK ICM-42688
Optical Image Stabilization (OIS) for Still Images
• Optical Image Stabilization:
 - Extended image exposure allows more light to reach every pixel of the image sensor, leading to more vivid pictures.
 - In hand-held (aka Smartphone) photography keeping the shutter open longer risks creating picture blur due to hand jitter.
 - With OIS an OIS controller uses the Gyro measured camera movement to adjust the lens position (shift or tilt) to counteract the physical movement and keep the shutter open longer.
Smartphone with and without OIS

Without OIS

With OIS
Smartphone with and without OIS (Shake Test)
OIS Market Trends

• “Main Board” OIS
 - Single motion sensor for UI and OIS
 - Replacing dedicated OIS motion sensors
 - Dual-interface motion sensors (ICM-20690, ICM-40602)

• Dual OIS support for multi-camera phones
 - iPhone X, Samsung Galaxy S9, Note 8
 - Tripl-interface motion sensors (ICM-42600)

• 4-axis OIS compensates for rotation and linear motion
 - Xiaomi Mi6
CORONA: Smartphone Imaging Leadership

CORONA\textsubscript{XX}
Industry’s leading 6-axis Sensor & first dual UI/OIS
- Dedicated Gyro for OIS & UI Application
- ICM-20602

CORONA\textsubscript{XL}
Industry leading 6-axis performance with UI & OIS
- Single Gyro for OIS & UI Application
- ICM-20690 & 40602

CORONA\textsubscript{XLII}
Industry leading AR/VR performance with UI & dual OIS
- Single Gyro for dual-OIS & UI Application
- ICM-426xx

Humanizing the Digital Experience: TDK Developers Conference 2018
Electronic Image Stabilization (EIS) for Video
EIS Basics

EIS avoids choppy video recordings by moving a target frame inside the full frame

- “fixed frame”

- EIS processing: frame-to-frame displacement of the object due to camera shake
- Uses gyro output to shift the target frame in the Application Image Signal Processor
TDK EIS Video Image Stabilization

TDK video stabilization gets highest DXO Mark!

TDK has highest Score of Stabilization on Rank

No EIS

SONY Xperia

TDK INVN EIS
CORONA devices offer unique features for EIS

Frame Sync (FSYNC) signal to align motion data with video frames

ODR delay counter to store delay between FSYNC and next gyro sample

Host can read Δ from FSYNC ODR Delay Counter and use it to create interpolated gyro data for EIS

- Interpolated gyro data has better alignment with FSYNC than original gyro data
- Results in more accurate EIS performance
Other Applications
Sports

- **Swing Analysis:**
 - Golf, baseball, tennis, cricket etc.
 - 6-axis motion sensor embedded in golf club, bat
 - Motion sensor tracks player’s swing and sends data to computer/smartphone application
 - Application analyzes player’s swing and provides feedback for improvement

- **Other sports examples:**
 - Ski motion analysis
 - Motion sensor in soccer ball to track ball motion during game
 - Biking: Wheel mounted motion sensor monitors applied forces – used to control suspension system
 - Archery: Arrow mounted motion sensor measures arrow’s flight characteristics and impact ballistics data

TDK-InvenSense Solution: ICM-20649/ICM-42686 for industry leading accuracy
Drones

- Vertical stabilization camera takes an image of the ground every 16 milliseconds and compares it to the previous one to determine the speed of the drone
- Ultrasound sensor analyzes the flight altitude up to 16 feet
- Pressure sensor measures air pressure and analyzes flight altitude beyond 16 feet
- 3-axis gyroscope measures the bank angle of the drone
- 3-axis accelerometer measures the positioning of the drone on 3 axes and its linear speed
- 3-axis magnetometer helps define the position of the drone
- Microphone captures audio as part of media recording
- Global Navigation Satellite System (GNSS) chipset (GPS + GLONASS) geo-localize the drone and help measure the speed in order to stabilize the drone in high altitudes
- Drone controller with gyroscope + accelerometer; microphone to record commentary

* Items in blue are sensors provided by TDK-InvenSense

TDK-InvenSense Solution: ICM-20789 6-axis + pressure sensor
e-Scooters, Bikes, Hoverboards

- 6-axis motion sensor measures
 - Acceleration in the forward-backward, up-down and right-left directions
 - Angular velocity in the vehicle’s pitch, roll and yaw directions
 - Calculates and relays position information in real-time to the bike’s systems to control the engine and chassis behavior to assist the rider
- Safety: Shuts off engine on fall detection
 - Minimizes rider drag/injury
- Hoverboard: Motion sensor used to control balance and speed

TDK-InvenSense Solution: ICM-20648 6-axis w/DMP for real time motion processing
Tools (Screwdrivers, Drills etc.)

- Motion sensor in tool senses the motion of user wrist
 - Changes direction and speed to help user tackle projects with ease
- Safety: Shuts off if tool jams in a hole
 - Normally, such an occurrence would twist the tool, and user wrists and arms.
 - Motion sensor detects when the drill is suddenly overburdened and turns off the motor

TDK-InvenSense Solution: ICM-42688 for industry leading accuracy
Cleaning Robot Orientation Errors

• Orientation (Yaw) errors in Cleaning Robots
 o Cause poor coverage of floor area
 o Require multiple passes over the floor to get full coverage

• Yaw errors are caused by
 ➔ Gyro Sensitivity
 o Measured rotation differs from actual rotation by a small percentage

 ➔ Gyro Bias
 o Yaw drift over an hour can be significant
 o This is caused by Gyro Bias
 ▪ Every motion sensor has a non-zero Bias
 ▪ Gyro Bias drifts over time and temperature (Robot can heat up by 20°C)

 ➔ Robot tilt
 o Caused when using gyro only design
 o Change in pitch/roll confuses Yaw in 1-axis and 3-axis devices

➔ Yaw error and drift should be minimized for better Robot Orientation
Product Offerings
Motion Sensor Device

- Digital Filters: Programmable characteristics (bandwidth, noise, latency); Filters for Low Noise and Low Power Modes
- User Registers: User configuration parameters (device modes, FSR, ODR, filter selections); Interrupts status
- FIFO to store data for sending to Host in bursts – helps reduce system power by reducing frequency of host wakeup
- Slave Interface to Host: SPI or I2C
- Master Interface (I2C) for interfacing to external sensors. Bring data from external sensors on chip for fusion with on-chip data
- DMP: On-chip motion processor offloads motion processing from host
Current Channel Products

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Dimensions</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM-20648</td>
<td>6-axis (w/sensor fusion)</td>
<td>3x3x0.9mm</td>
<td>in MP, IoT/Wearables</td>
</tr>
<tr>
<td>ICM-20948</td>
<td>9-axis (w/compass)</td>
<td>3x3x1mm</td>
<td>in MP, Navigation, IoT</td>
</tr>
<tr>
<td>ICM-20690</td>
<td>Dual-Interface: 6-axis UI+OIS</td>
<td>2.5x3x0.9mm</td>
<td>in MP, Smartphones, Imaging</td>
</tr>
<tr>
<td>ICM-20602</td>
<td>Single-Interface: 6-axis UI</td>
<td>3x3x0.75mm</td>
<td>in MP, VR/Game controllers</td>
</tr>
<tr>
<td>ICM-20600</td>
<td>Single-Interface: 6-axis UI</td>
<td>2.5x3x0.91mm</td>
<td>in MP, Smartphones</td>
</tr>
<tr>
<td>ICM-20789</td>
<td>7-axis (w/pressure sensor)</td>
<td>4x4x1.365mm</td>
<td>in MP, Wearables, Drones, IoT</td>
</tr>
<tr>
<td>ICP-101xy</td>
<td>1-Axis pressure</td>
<td>2x2x0.72mm</td>
<td>in MP, Smartphones, Drones, IoT</td>
</tr>
</tbody>
</table>

Upcoming Corona XLII Offerings

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Dimensions</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM-42605</td>
<td>Next Gen 6-Axis Flagship</td>
<td>2.5x3x0.9mm</td>
<td>MP: 1H 2019</td>
</tr>
<tr>
<td>ICM-42686</td>
<td>Highest range Gyro/Accel</td>
<td>2.5x3x0.9mm</td>
<td>MP: 1H 2019</td>
</tr>
<tr>
<td>ICM-42688</td>
<td>Highest precision Gyro/Accel</td>
<td>2.5x3x0.9mm</td>
<td>MP: 1H 2019</td>
</tr>
</tbody>
</table>

Note: Color coded chips are from same product family. 2.5x3mm packages are pin & register compatible; different packages are register compatible.
CORONA ICM-426xx Motion Sensors Specs

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>ICM-42605</th>
<th>ICM-42686</th>
<th>ICM-42688</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyro FSR</td>
<td>dps</td>
<td>Up to ±2000</td>
<td>Up to ±4000</td>
<td>Up to ±2000</td>
</tr>
<tr>
<td>Gyro Offset</td>
<td>dps</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±0.5</td>
</tr>
<tr>
<td>Gyro Sensitivity</td>
<td>%</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±0.5</td>
</tr>
<tr>
<td>Gyro Noise</td>
<td>mdps/√Hz</td>
<td>3.8</td>
<td>5.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Gyro Offset Over Temp</td>
<td>%/°C</td>
<td>±0.005</td>
<td>±0.005</td>
<td>±0.005</td>
</tr>
<tr>
<td>Gyro Sensitivity Over Temp</td>
<td>%/°C</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Gyro Non-Linearity</td>
<td>%</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>Gyro Cross-Axis Sensitivity</td>
<td>mA</td>
<td>0.57</td>
<td>0.57</td>
<td>0.77</td>
</tr>
<tr>
<td>Gyro Current (Low Noise)</td>
<td>mA</td>
<td>0.57</td>
<td>0.57</td>
<td>0.77</td>
</tr>
<tr>
<td>Accel FSR</td>
<td>g</td>
<td>Up to ±16</td>
<td>Up to ±32</td>
<td>Up to ±16</td>
</tr>
<tr>
<td>Accel Offset (Board)</td>
<td>mg</td>
<td>±40</td>
<td>±40</td>
<td>±40</td>
</tr>
<tr>
<td>Accel Sensitivity</td>
<td>%</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±0.5</td>
</tr>
<tr>
<td>Accel Noise</td>
<td>µg/√Hz</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Accel Offset Over Temp</td>
<td>%/°C</td>
<td>±0.15</td>
<td>±0.15</td>
<td>±0.15</td>
</tr>
<tr>
<td>Accel Sensitivity Over Temp</td>
<td>%/°C</td>
<td>±0.007</td>
<td>±0.007</td>
<td>±0.007</td>
</tr>
<tr>
<td>Accel Non-Linearity</td>
<td>%</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>Accel Cross-Axis Sensitivity</td>
<td>%</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>Accel Current (Low Noise Mode)</td>
<td>mA</td>
<td>0.24</td>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td>6-Axis Current (Low Noise)</td>
<td>mA</td>
<td>0.72</td>
<td>0.72</td>
<td>0.97</td>
</tr>
<tr>
<td>Interfaces</td>
<td></td>
<td>SPI/I2C/I3C</td>
<td>SPI/I2C/I3C</td>
<td>SPI/I2C/I3C</td>
</tr>
<tr>
<td>Motion Functions</td>
<td></td>
<td>WoM, Pedo, Gestures</td>
<td>WoM, Pedo, Gestures</td>
<td>WoM, Pedo, Gestures</td>
</tr>
<tr>
<td>FIFO Size</td>
<td>Kbytes</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Humanizing the Digital Experience: TDK Developers Conference 2018
I3C Overview and Benefits
One Bus to Rule Them All! (all sensor connections at least)

- I3C provides a simplified interconnect with abundant throughput and in-band-interrupts

Multi-interface Sensor System (Source: MIPI Alliance)

Single-interface I3C Sensor System (Source: MIPI Alliance)
Typical System and Sensors Supported

I3C System Diagram (Source: MIPI Alliance)

Sensor Classes Addressed by I3C (Source: MIPI Alliance)

- **Mechanical / Motion**
 - Compass/Magnetometer
 - Gyro
 - Accelerometer
 - Proximity
 - Touch screen
 - Grip
 - Time of Flight (gestures)
 - Audio/Ultrasonic (events)

- **Biometrics/Health**
 - Fingerprint
 - Glucometer
 - Heart rate
 - Olfactory (e.g., breathalyzer)
 - EKG
 - GSR (galvanic skin response)

- **Environmental Sensing**
 - Ambient light
 - Barometric pressure / altimeter
 - Temperature
 - Carbon monoxide / pollutants
 - Humidity

- **Other**
 - NFC (Near Field Communication)
 - Haptic feedback
 - IR (smart TV remote)
 - UV/RGB

I3C Bus
(SDA & SCL)

Legacy
I3C Sensor(s)

I3C Bus
(SDA & SCL)

I3C Slave

Host Controller
May be SDR-Only

I3C Main Master

I3C Slave

I3C Sensor(s)
May be SDR-Only

I3C Secondary Master

I3C Smart Sensor(s) / Hub(s) / Engine(s)
May be SDR-Only
I3C Key Features/Advantages

• Two goals of the I3C interface:
 o Use as little energy as possible in transporting data and control
 o Reducing the number of physical pins used by the interface

• I3C interface features:
 o Two wire serial interface up to 12.5 MHz (legacy I2C supports up to 3.4 MHz)
 o Legacy I2C Device co-existence on the same Bus
 o Dynamic Addressing while supporting Static Addressing for Legacy I2C Devices
 o I2C-like Single Data Rate messaging (SDR)
 o Optional High Data Rate messaging Modes (HDR)
 o Multi-Master capability
 o In-Band Interrupt support
I3C vs. I2C: Power and Data Rate Comparison

I3C vs. I2C Energy and Data Rate Comparison (Source: MIPI Alliance)
APEX Motion Engine
APEX Motion Engine

- Pedometer
 - Step Detect + Step Count
 - Supports all key WeChat requirements
 - Lowest in-class false positives for biking and transportation
 - Below 5% step count error on average for typical walk and run
 - Interrupts for Step Detect and Step Count Overflow

- Tilt Detection
 - Issues an interrupt when the Tilt angle exceeds 35° for more than a programmable time

- Tap Detection
 - Issues an interrupt when Tap is detected

- Wake on Motion
 - Detects motion through accel samples exceeding a programmable threshold
 - Can be used to enable chip operation from sleep mode

- Significant Motion Detection
 - Detects motion if WoM events are detected during a programmable time window (e.g. 2s or 4s)

- Raise to Wake/Sleep
 - Gesture detection for wake and sleep events.
 - Interrupt is issued when either of these two events are detected.

APEX: Advanced Pedometer and Event detection – neXt gen
Pedometer

• Fully configurable Pedometer
• Supports all key Wechat requirements
• Lowest in-class false positives for biking and transportation
• Below 5% step count error on an average for typical walk and run
• The only HW Pedometer that also reports
 - Cadency (number of samples/step)
 - Walk/run classification
Motion Library: Examples (Offered in Binary)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Gaming</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedometer (SW & HW)</td>
<td>(Game) Rotation Vector</td>
<td>Screen Orientation</td>
</tr>
<tr>
<td>Basic Activity Classifier</td>
<td>GeoMag Rotation Vector</td>
<td>Phone on Ear Position Detect</td>
</tr>
<tr>
<td>Sit & Stand</td>
<td>Rotational Shake</td>
<td>Rotational Shake</td>
</tr>
<tr>
<td>Tilt</td>
<td>Gravity, Linear Acceleration</td>
<td>Pick up</td>
</tr>
<tr>
<td>Significant Motion Detect</td>
<td></td>
<td>Double Tap</td>
</tr>
<tr>
<td>Energy Spent</td>
<td></td>
<td>Look At Screen</td>
</tr>
<tr>
<td>High Impact, Shock Detect</td>
<td></td>
<td>High Impact, Shock Detect</td>
</tr>
<tr>
<td>Stationary/Motion Detect</td>
<td></td>
<td>Stationary/Motion Detect</td>
</tr>
<tr>
<td>Stairs/Floors climbed Count</td>
<td></td>
<td>Stairs/Floors climbed Count</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>Pick Up and Put Down</td>
</tr>
</tbody>
</table>

Calibration
- Gyro Bias Tracker (In motion)
- Gyro Bias with No Motion (FNM)
- Accel Bias (in motion)
- Mag Cal …
The SmartMotion Evaluation Kits
TDK-InvenSense SmartMotion® Platform

- Single Board “Out of the Box” experience
 - Microchip G55 MCU + TDK-InvenSense Motion Sensor

- On-board embedded debugger
 - Saves $100-$150 for external debugger
 - Simpler set up/no cables for debugger
 - Program and debug the MCU
 - Debugging features to assist in code development

- Affordable - $99 ASP
 - Buy several platforms for parallel development
 - System prototyping and demonstration vehicle

- Scalable design
 - Supports legacy and future motion sensors
 - WiFi/BLE support with external modules from Microchip

- Less than 15 minutes to set-up
SmartMotion® Platforms

SmartMotion Platforms

Motion Sensors

Applications

DK-10100 – Development Platform for InvenSense ICP-10100
- 1-axis pressure sensor

DK-20602 – Development platform for InvenSense ICM-20602:
- 6-axis motion sensor that combines a 3-axis gyroscope and 3-axis accelerometer.

DK-20648 – Development platform for InvenSense ICM-20648:
- 6-axis motion sensor that combines a 3-axis gyroscope, 3-axis accelerometer, and Digital Motion Processor™ (DMP™).

DK-20789 – Development platform for InvenSense ICM-20789:
- 7-axis motion sensor combining a 3-axis gyroscope, 3-axis accelerometer, and a high accuracy pressure sensor.

DK-20948 – Development platform for InvenSense ICM-20948:
- 9-axis motion sensor that combines a 3-axis gyroscope, 3-axis accelerometer, 3-axis compass, and a Digital Motion Processor™ (DMP™).

DK-10100
- Drones
- Security systems
- Wearables
- Servers Air Flow Control
- E-cigarettes

DK-20602
- IoT
- Smartphones, Tablets, Smart Watches, Wearables, Activity monitors
- Cleaner Robots
- Sports Equipment
- Drones, Toys

DK-20648
- IoT
- Smart Watches
- Robots
- Wearables, Health Monitoring band

DK-20789
- IoT
- Drones
- Flying Toys
- Wearables, Activity Monitors

DK-20948
- IoT
- Navigation
- Industrial application
- Wearables, Smartphones, Activity Monitors, Smart Watches
- Drones, Toys and Sports Applications
MotionLink – Hardware Evaluation Tool

- Stream, evaluate, and log raw gyro, accel, and other sensor data
- Supports all TDK-InvenSense Motion Sensors!

PC Based Software with following features –

- Read Register Map Values
- Simple I2C read and writes
- Display raw sensor data up to 1Khz sample rate
- Log Data to text file
- Display graphical sensor data
eMD (embedded Motion Driver)

- Motion Software stack includes features like….
 - Initialization and configuration
 - Raw Sensor Data streaming
 - Sensor Fusion output
 - Gesture Tracking
 - DMP Image (if applicable)
 - Factory Test and Calibration
 - In-Use Calibration
 - Wake-On-Motion

- Release Package includes…
 - ATMEL Studio Project
 - sensor-cli : Command line interface to software

- Currently supported eMDs
 - ICP-101XX
 - ICM-20602
 - ICM-20648
 - ICM-20789
 - ICM-20948
Evaluating Corona…

EVBs available at Mass Production at InvenSense Distributors

Connect with any SmartMotion DK board

Evaluate with MotionLink!
The DK-42605 available soon after MP!! (…with eMD)
TDK-InvenSense Motion Support

- TDK-InvenSense SmartMotion Website -
 - https://www.invensense.com/smartmotion-platform/

- TDK-InvenSense Developer’s Corner (SW, tools, App Notes)
 - https://www.invensense.com/developers/login/

- General Tech Support - techsupport_NorthAmerica@invensense.com

- General Sales Support – sales.us@invensense.com
Thank You!