

HUMANIZING THE DIGITAL EXPERIENCE

TDK Developers Conference 2018

Gas and Environmental Sensors

Towards Complete Humanized Experience

Sreeni D. Rao, Ph.D.

sreeni.rao@us.tdk.com

The Complex World of Chemical Sensing

CHEMICAL SENSING

√ Many gases

CO, CO2, H2, Nox SO2, H2S Ethanol, Methane, Ammonia Formaldehyde, Acetone Methanol, many other VOC's

√ Many techniques

Electrochemical
Gravimetric
Optical
Calorimetric
Spectroscopy
Photo-acoustic......

√ Many applications

Environmental air quality
Indoor air quality
Medical
Automotive
Fire detection
Industrial, Military, Hobby......

√ Many platforms

Wearables
Smart speakers
Kitchen appliances
Automotive electronics
Medical devices
Mobile devices.....

√ Many \$\$\$

Air Quality is THE Critical Public Health Issue of Our Times

Air Quality is THE Critical Public Health Issue of Our Times

Distance between these two locations < 1 km

(AQI derived from PM10, O₃, NO₂, SO₂, and CO)

Air Quality is THE Critical Public Health Issue of Our Times

Even Indoors

Ratio of "people cost" to "building cost" is 13:1

[source: https://ehp.niehs.nih.gov/15-10037/]

Indoor air quality is a top five environmental risk to public health.

Worst in schools

[source: EPA]

Indoor Pollutant Gases

Gas Carbon dioxide	Emission Sources Metabolic activity, combustion, garage exhaust, tobacco smoke
Carbon monoxide	Boilers, gas or kerosene heaters, gas stoves, wood stoves, fireplaces, tobacco smoke, garage exhaust, outdoor air
Nitrogen dioxide	Outdoor air, garage exhaust, kerosene and gas space heaters, wood stoves, gas stoves, tobacco smoke
Ozone	Outdoor air, photocopy machines, electrostatic air cleaners

Outdoors or Indoors, CO₂ is a Big Culprit

Indoor Air Quality is More Easily Measurable and Actionable

It is not just about quality of life..... it is also about energy savings

Occupancy Pattern in a Typical Store/Gym/Theater

Occupancy Pattern in a Typical Office Building

Compared with a system controlled by a time program (blue area), demand-controlled ventilation shows a significant reduction in hours run (area marked in green)

Monitoring building occupancy could save 30% of US HVAC energy costs

CO₂ levels are the most reliable indicator of occupancy

The Economics of Demand Control Ventilation HVAC

Break-even point is not attractive at today's prices*

Smart Home / Smart Building HVAC Architecture

Courtesy: Syxthsense,

Current CO₂ Sensors are not up to the Job

NDIR

35x16x8mm; 125mW Typical 1k Price: \$60

Photo-acoustic

85x40x35mm; >> 100mW
Typical 1k Price: TBD (Only VOC)

Electrochemical

10 mm dia x 20 mm high; 400 mW Typical 1k Price: \$30 (Only VOC)

MEMS MOX

3x3x1 mm; 30 mW Typical 1k price: \$2 - \$5 (only VOC)

CO + CO₂ sensor Target: 3x3x1 mm; ~0.5 mW

- TDK offers the only non-optical direct CO₂ detector
- TDK offers the only price-competitive direct CO₂ detector

TDK's CO/CO₂ Sensing Technology

Resistance change >> that of Pt Sensitivity is higher by ~ 10x

TDK CO₂ Sensor Demo Board

TDK CO₂ Sensor Demo Videos

Air Quality Depends on Many Other Gases

Indoor

- o Radon, NO₂, Particulates, Biologicals
- Volatile Organic Compounds (VOC's)
 - Formaldehyde (CH₂O)
 - WHO recommends 80 ppb as safe;>100 ppb as "actionable"

o Particulates, Ozone, CO, NOx, VOC's.....

Temperature °C ± 1°	Relative Humidity % ± 5%	Formaldehyde Concentration ppm
30	70	0.36
25	70	0.29
30	50	0.28
30	30	0.23
25	50	0.17
25	30	0.14
20	70	0.12
20	50	0.09
20	30	0.07

Efficient and cost-effective VOC sensing is an unmet need

The Real Challenge in Real World is Odor Detection

Applications of Odor Detection

Environmental Monitors

Airport/Train Station Security

Food Freshness

Medical Analysis

Medical Applications for Gas Sensing Abound

Breath gas profile analysis is a strong disease indicator

Human breath typically contains ~200 VOC's

Gas (Normal level)	Disease	
Acetone (480 ppb)	Diabetes	
Ammonia (830 ppb)	Kidney malfunction	
Isoprene (110 ppb)	Cholesterol	
Methylated Hydrocarbons	Breast cancer	
Sulfur compounds	Liver disease	
Toluene	Lung cancer	
Nitrous Oxide (NO) (40 ppb)	Asthma	
H ₂ S (100 ppb)	Helitosis (bad breath)	
Ethanol (200 ppb)	Alcohol	
Ethane	Inflammatory diseases	
Methanol (470 ppb)	Liver Cirrhosis	

VOC Sensing is a Ubiquitous Need

Home Products / IAQ
Formaldehyde, Methane, Other VOC's

Environmental
O3, VOC's (Benzene, Toluene, Xylene, etc.)

Kitchen Products
Several VOC's

Medical
Multiple VOC's (ex. Benzene, Acetone, Ethanol)

TDK's MEMS Multipixel Sensor

16 Pixel array

- Upto 16 independently addressable microheater bridges
- Full function ASIC: 4mm x 1 mm
- Target platform for VOC's
- Nanoparticle ink

InvenSense Microheater

InvenSense Platform utilizes Ultrasmall microheaters to enable multipixel sensing in small form factor

Integrated CMOS limits anneal temperature for metal-oxides

20x better response time and 1.5x better sensitivity

Gases currently targeted: Ethanol, Methane, Acetone, H₂S, O₂

Applications of Odor Detection: Material Classification

Separate different brands of coffee

Odor Detection Demo Video

The Complex World of Chemical Sensing

CHEMICAL SENSING

√ Many gases

CO, CO2, H2, Nox SO2, H2S Ethanol, Methane, Ammonia Formaldehyde, Acetone Methanol, many other VOC's

√ Many techniques

Electrochemical
Gravimetric
Optical
Calorimetric
Spectroscopy
Photo-acoustic.....

√ Many applications

Environmental air quality Indoor air quality Medical

Automotive

Fire detection Industrial, Military, Hobby.......

✓ Many \$\$\$

Gas Sensing in Automobiles

Exhaust gas sensing and ignition control are the most common applications

Automotive AQM

Gas Modules	Range	Minimum Detection Limit
Ozone O ₃ (GSS)	0-0.15 ppm	0.001 ppm
Ozone O ₃ (GSS)	0-0.5 ppm	0.001 ppm
Nitrogen Dioxide NO ₂ (GSS)	0-0.2 ppm	0.001 ppm
Nitrogen Oxides NO _x (GSS)	0-0.5 ppm	0.001 ppm
Carbon Monoxide CO (GSE)	0-25 ppm	<0.04 ppm
Carbon Dioxide CO ₂ (NDIR)	0-2000 ppm	<10 ppm
Hydrogen Sulphide H ₂ S (GSE)	0-10 ppm	<0.03 ppm
Sulphur Dioxide SO ₂ (GSE)	0-10 ppm	<0.03 ppm
Volatile Organic Compounds (PID)	0-20 ppm	0.01 ppm
Non-methane Hydrocarbon (GSS)	0-25 ppm	<0.1 ppm
Volatile Organic Compounds (GSS)	0-25 ppm	<0.1 ppm
Particle Monitor (nephelometer)	Sizes PM ₁ PM _{2.5} or PM ₁₀	Range 0-2000 μg/m ³
Particle Profiler (OPC)	Sizes PM ₁ PM _{2.5} and PM ₁₀	Range 0-500 µg/m³

Emerging Gas Sensing Needs in Automobiles

Passive Drunk Driver Detection

Drowsiness Detection / IAQ

Summary: Gas Sensing Will be Ubiquitous

TDK: Expertise in Gas Sensing Materials, Electronics, and Algorithms

Thermistor-based Platform for CO/CO₂

Heater with TDK unique material

- Significantly smaller and lower power than competition
 - 1.8 mm² die, 0.2mW (prototype)
- Sensitivity: CO: ±20ppm, CO_{2:} ±200 ppm
- Fast response time

MOx Multipixel Platform for VOC's

16 Pixel array

- 16 independently addressable pixels
- Nanoparticle ink Formulas
- Full function ASIC: 4mm x 1 mm
- Machine learning Algos -- improved selectivity
- VOC sensor in development

Wide Array of P, T, H Sensors

- Integrated PTH
- Stand alone P, T
- High volume, low cost
- Automotive grade

Advanced Packaging

TDK Packaging

- High Vol mic and press. products similar to gas
- Low cost
- SESUB

TDK's solutions are unique and agnostic to end platforms!

Thank You!