

DIGITAL EXPERIENCE

TDK Developers Conference 2018

Inertial-Assisted Positioning for Autonomous Vehicles

Contributing to fault-tolerant ADAS

TDK Developers Conference September 17-18, 2018 Santa Clara Marriott

Agenda

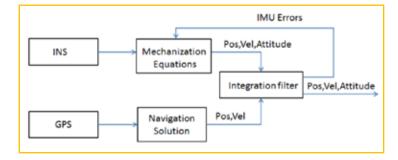
- Introduction
- Problem Statement and Technology Gaps
- Overview of Advanced Driver-Assistance Systems (ADAS) and Technologies
- Walkthrough of Current ADAS Solutions
- Forthcoming Localization Sensor Improvements
- ¬ RTK GNSS
- ¬ High-performance IMUs
- ¬ ADAS-quality inertial dead reckoning
- Summary

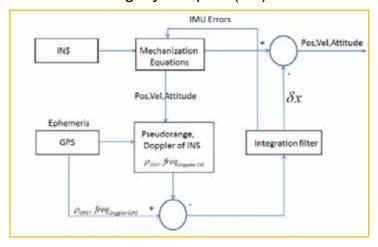
Who we are

- A worldwide leader in automotive and consumer-grade MEMS inertial sensors
- 100+ man-years investment in inertial navigation system (INS) software
- INS software shipping in >50 million OEM systems worldwide

Vehicle Telematics

Smartphone Navigation


GNSS/DR Modules



Inertial Navigation System (INS) Internal Architecture

Loosely Coupled (LC)

Tightly Coupled (TC)

Inertial-Assisted Positioning in Vehicles

Today

Fluid, continuous "blue dot" user experience during turn-by-turn navigation (non-safety)

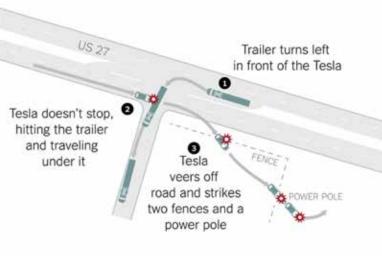
Position drift error: 1-10% of distance traveled

Forthcoming ADAS Applications

Autonomous vehicle positioning and fault-tolerance (safety)

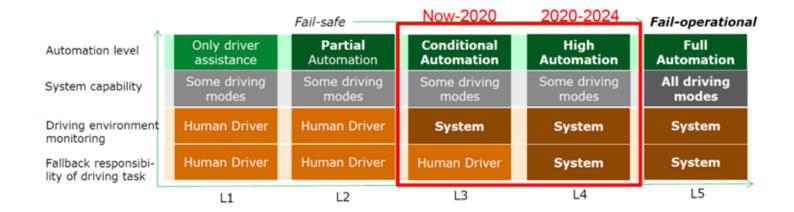
Position drift error: 0.1-0.2% of distance traveled

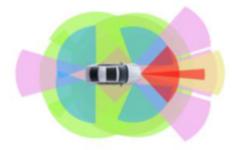
Problem: Today's ADAS Systems are Incomplete


TDK Developers Conference September 17-18, 2018 Santa Clara Marriott

Today's ADAS Solutions are Incomplete

- Excitement and "cool factor" need to come with proper consumer education about current limitations
- Robust and fault-tolerant ADAS system will also require high-precision RTK GNSS and affordable, yet near-tactical-grade IMUs that can deliver centimeter-level positioning.

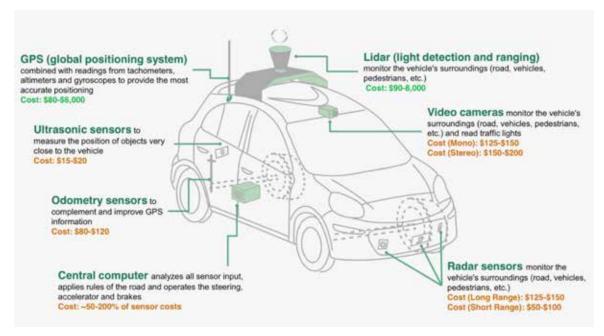




Automated Driving Levels & Sensor Evolution

From IHS Markit

- Perception sensors:
 - ¬ Camera
 - ¬ Radar
 - ¬ Lidar
 - Ultrasonic
- ¬ IR Camera


- Localization sensors:
- ¬ IMU
- Odometer
- Barometer
- Magnetometer
- ¬ GNSS
- HD maps

Autonomous Driving Sensor Technologies

- Most new technologies are for "relative" positioning and object avoidance (perception system)
- MEMS inertial are being driven to provide better performance for DR applications (short outages)

Pros/Cons Summary of Various Sensors

Sensor	Lidar	Radar	IR Camera	Normal Camera
Advantages	 Accurate depth measurement Inherently 3D so it can identify real objects from photos Higher resolution than radar Can identify shapes based on contrast in reflectivity (e.g. lane markings) 	 Range and speed are direct measurements Depth Sensor Cheap and already exists in vehicles Works well in poor weather conditions (fog, dust, rain and snow) LRR high range, velocity and AOA resolution. Wider bandwidth and hence higher object resolution. 	 Works perfectly at night even with oncoming headlights Very reliable in identifying living objects Can identify living things from statues Works well in poor weather conditions Not affected by sudden changes in lighting conditions (such as going in-out of tunnel) 	 Height resolution Color information useful for identifying objects Cheap Necessary for perception and object classification Exist in all cars nowadays
Disadvantages	 It can't work in poor weather conditions such as snow, rain, dust, and mist. Expensive (price coming down hugely with solid state LIDAR) Lower resolution than camera Can't differentiate between statues and real living objects 	 Very low resolution for MRR-SRR. Can't differentiate between statues and real living things Can have problem with wood and painted plastic. Can't always correctly identify objects leading to false positives. 	 Degraded performance at high ambient temperatures (daytime summer in hot countries) Low resolution compared with normal cameras Higher price than normal cameras but lower than lidar 	 Poor performance at night especially with oncoming headlights Poor performance at poor weather conditions Temporary blind at sudden change in lighting conditions (e.g. tunnels) Can't differentiate between photos and real objects

A Look Into Today's L2/L3 ADAS Systems

TDK Developers Conference September 17-18, 2018 Santa Clara Marriott

Tesla (L2 Autonomy)

- Requires hands on wheel
- Not restricted to freeway; but no detection of stop signs or traffic lights
- No lidar

https://www.youtube.com/watch?feature=oembed&v=pqmdc9YoFVYhttps://www.youtube.com/watch?feature=oembed&v=-2ml6sjk_8c

Cadillac Super Cruise

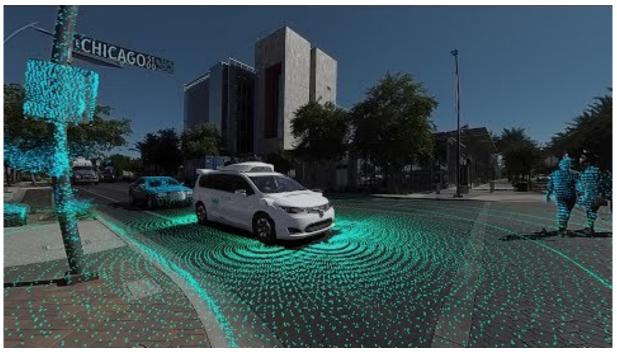
- Hands-free, highway-only
- Operates only on divided highways w/on and off ramps
- Sensors monitor eyes to make sure attention is on the road
- Lidar-mapped 130,000 miles of freeway for HD maps (5cm accuracy)

https://www.youtube.com/watch?feature=oembed&v= rxW68ADIdI

Audi Traffic Jam Pilot "Conditional" L3

- World's First production lidar scanner in a high-volume passenger car
- 37 MPH (60KM/hr) limit on freeway
- Limted-access, divided highways only
- Hands off, eyes off under pre-defined circumstances
- Hands on, eyes on L2 for US (adaptive cruise w/steering)
- Must be in-traffic in front and sides
- No traffic lights or pedestrians
- 10 second warning for driver to take over

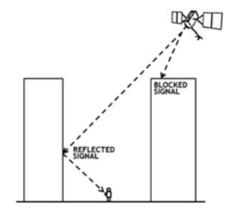
https://www.youtube.com/watch?feature=oembed&v=nUIK6fpveXg

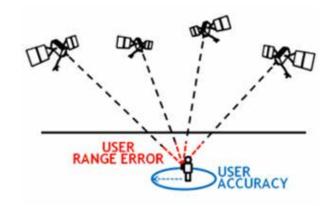


Waymo

- Lidar, Radar, cameras, HD maps
- Al and deep learning: Human behavior modeling

https://www.youtube.com/watch?v=B8R148hFxPw

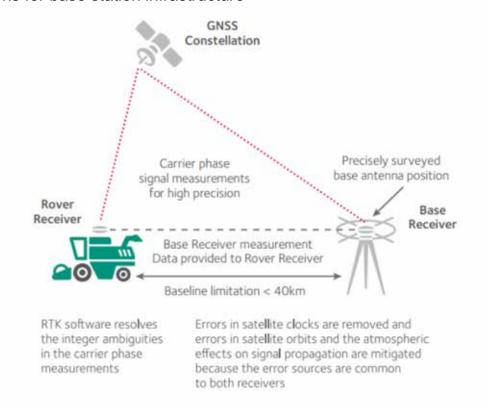

Missing Piece #1: High-Accuracy GNSS


Absolute Position, Time and Velocity

TDK Developers Conference September 17-18, 2018 Santa Clara Marriott

Standard GNSS Not Sufficient for Autonomous Vehicles

4.9m (16ft.): Average accuracy of GPS-enabled smartphones


Courtesy: gps.gov & ion.org

RTK-GNSS: Up to 1cm accuracy

Network-based corrections for base station infrastructure

Courtesy: Novatel

RTK-GNSS TTFF

Time to First Fix (TTFF) Specifications⁸ Hot Start⁹ Cold Start¹⁰ Re-acquisition¹¹ < 5 s < 60 s < 2 s

Courtesy: Swift Navigation

⁸ In open sky and strong signals conditions.

⁹ Hot Start is the time taken by the receiver to achieve a standard position fix after a brief outage. For example, the time taken to fix a position for a car that is exiting a long tunnel. This can also be simulated by a simple RF on/off test with outages between 30 and 50 seconds.

¹⁰ Cold Start is the time taken by the receiver to achieve a standard position fix after a prolonged outage. For example, the time taken to achieve a position fix for a car that has been parked overnight in a garage and once it sees the sky view for the first time.

¹¹ Re-acquisition is defined as the time taken to re-acquire position lock after brief moment of outage. For example, a car traveling under a freeway/highway overpass. This can also be simulated by a simple RF on/off test with outages between 1 and 5 seconds.

Missing Piece #2: High-Accuracy, Affordable IMU and Inertial-Assisted Positioning

TDK Developers Conference September 17-18, 2018 Santa Clara Marriott

Why are high-precision IMUs required for ADAS

- Fault-tolerance during other ADAS system failure or uncertainty
- ¬ IMU alone can position vehicle with 30cm accuracy for short time periods (10sec) to safely brake or pull a vehicle over

- Attitude reference (orientation of the vehicle relative to the direction of travel)
 - ¬ Independent reference for LIDAR/cameras
- Improved RTK-GNSS precision and reacquisition
- High-rate position reference: 100Hz position data to image processing algorithms

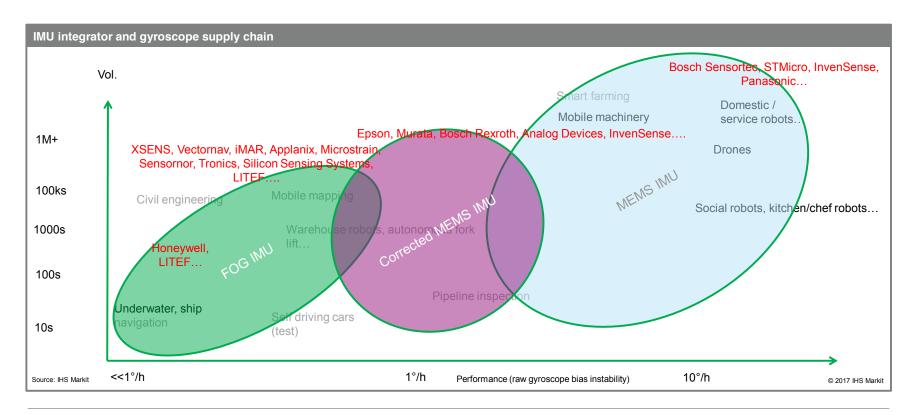
IMU Opportunity for Autonomous Driving (L3-L5)

Summary of autonomous driving

- · Long term opportunity
- Begins 2022/2023 in few 1,000s (1–3 luxury car platforms)
- Reasonable volumes by 2030 (conservative estimate 2–3 million)
- · Specifications not yet clearly defined

Confidential. © 2017 IHS Markit™. All Rights Reserved.

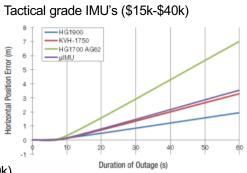
- · Is high performance sensor needed
- Bias instability ranges from as much as 8°/h to as little as 0.01°/h
- · Dead reckoning will be part of sensor fusion concept
- · Inertial sensors will be augmented by cameras, radar, LIDAR, etc.

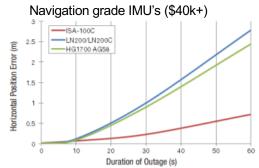

- · Potential for performance devices
- Price point? Probably start high but tier 1s will need IMU costing as little as \$10, \$20?
- "Fail operational" mode requirement could drive price much higher, at least in beginning
 - · What if camera, radar fail or sensor fusion is compromised (functional safety)
 - · Over-engineer? Characterize sensor behavior in beginning
- · Many players interested

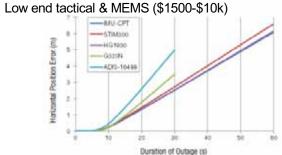
51

IMU Grade Landscape

Confidential. © 2017 IHS Markit™. All Rights Reserved.


15



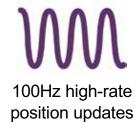


Today's RTK+INS Performance/Price

- High-grade IMU's on vehicles have nearly linear drift wrt time over short GNSS outages durations
- <30cm drift in 10 seconds
- 1-2m drift in 30 seconds

IMU Performance Requirements for ADAS

Gyroscope Performance	ТҮР	Units
In-run bias instability	<2	°/hr
Angular Random Walk	<0.1	°/vhr
Bias temperature coefficient	1	m°/sec/°C
Sensitivity temperature coefficient	<0.003	%/°C
Misalignment	<0.05	Degrees
g-sensitivity	<0.03	°/sec/g
Accelerometer Performance	ТҮР	Units
In-run bias Instability	<10	μg
Velocity Random Walk	<0.03	m/sec/vhr
Bias temperature coefficient	<0.07	mg/℃



ADAS INS Benefits & Requirements

30cm accuracy during GNSS or perception-challenged situations

Up to 10 degree vehicle mounting misalignment compensation

Summary

- What's needed for a fault-tolerant, autonomous system:
 - ¬ A heck of a lot of software, algorithm and AI development
 - Ubiquitous HD maps
 - Centimeter-accurate RTK GNSS
 - Inertial dead-reckoning w/tactical-grade IMU
 - o RTK+IMU is not a silver bullet, but it will be a key part of a fault tolerant system
- Reasons for ADAS-grade Inertial-assisted positioning
 - ¬ Improved fault tolerance
- ¬ Reduce "grab the wheel scenarios"
 - o Perception system uncertainty or unavailability
 - o RTK-GNSS outage (e.g. underpass)
- ¬ Enable more time for driver to grab the wheel
- ¬ Enable autonomous safe stopping or roadside pullover in case of system failure

Thank You!