

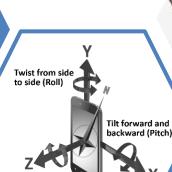
HUMANIZING THE DIGITAL EXPERIENCE

TDK Developers Conference 2018

InvenSense – Motion Sensor Applications and Solutions for the Internet of Moving Things

Prakash Madhvapathy

TDK Developers Conference September 17-18, 2018 Santa Clara Marriott


TDK MEMS Sensors are driving new IOT Applications

IMU Sensors in Smartphones Movement, Gestures, Orientation, Image Stabilization

Biometrics Ultrasonic Fingerprint Authentication for Secure Payment, Medical Access

Turn from portrait to landscape (Yaw)

Microphones High SNR, high AOP Far-field audibility, Noise cancellation, beamforming Augmented & Virtual Reality 6 DoF Movement, Orientation Tracking, Object overlay

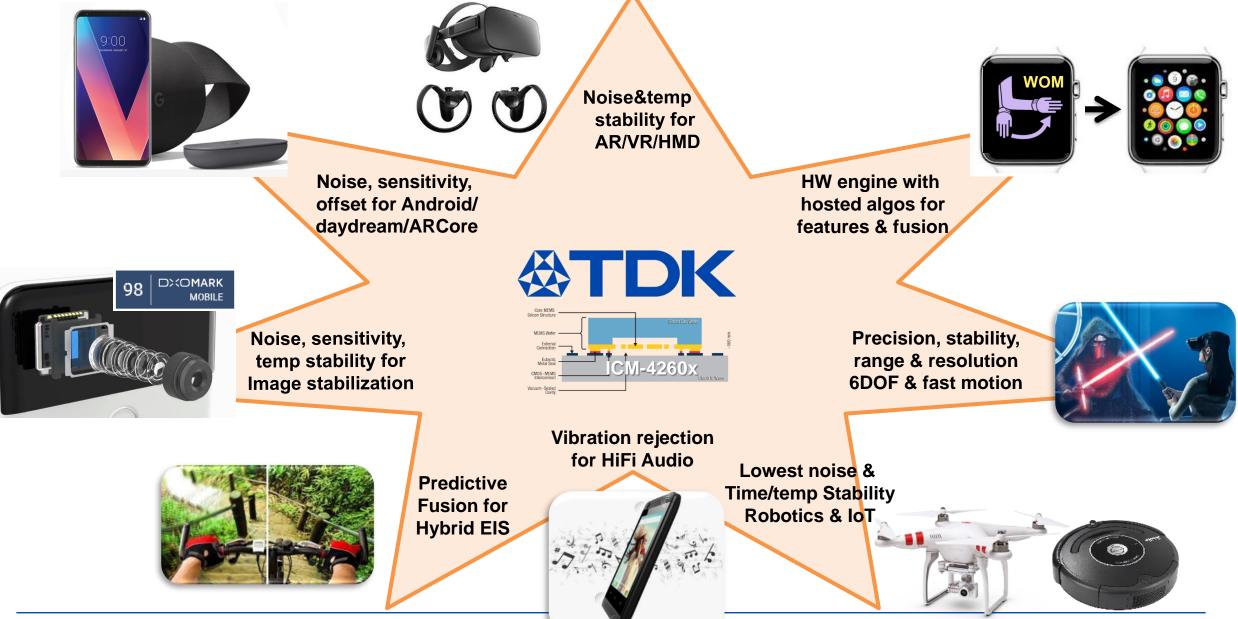
igh AOP idibility, ellation, ming Se y it, ng,

> Pressure Elevation tracking, Hovering, Autopilot, Navigation Aiding, Image Stabilization in Drones

IMU Sensors in Automotive

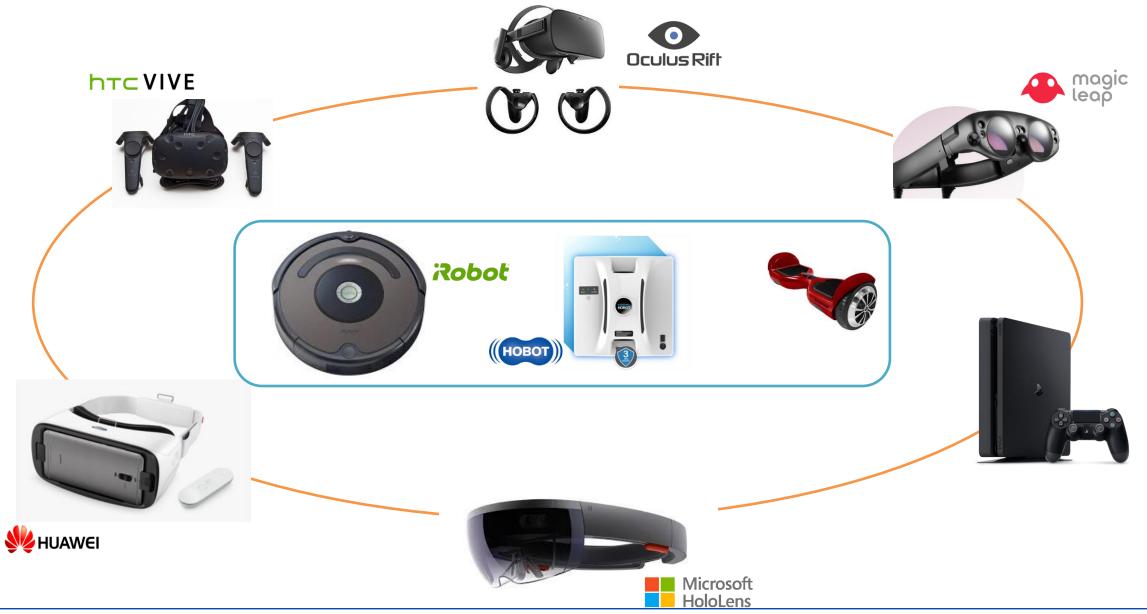
In-cabin & safety, GPS Assistance, ADAS, Infotainment

> Robotics & Artificial Intell. Motion, Audio, Touch, Pressure, Proximity, Environmental


Drones

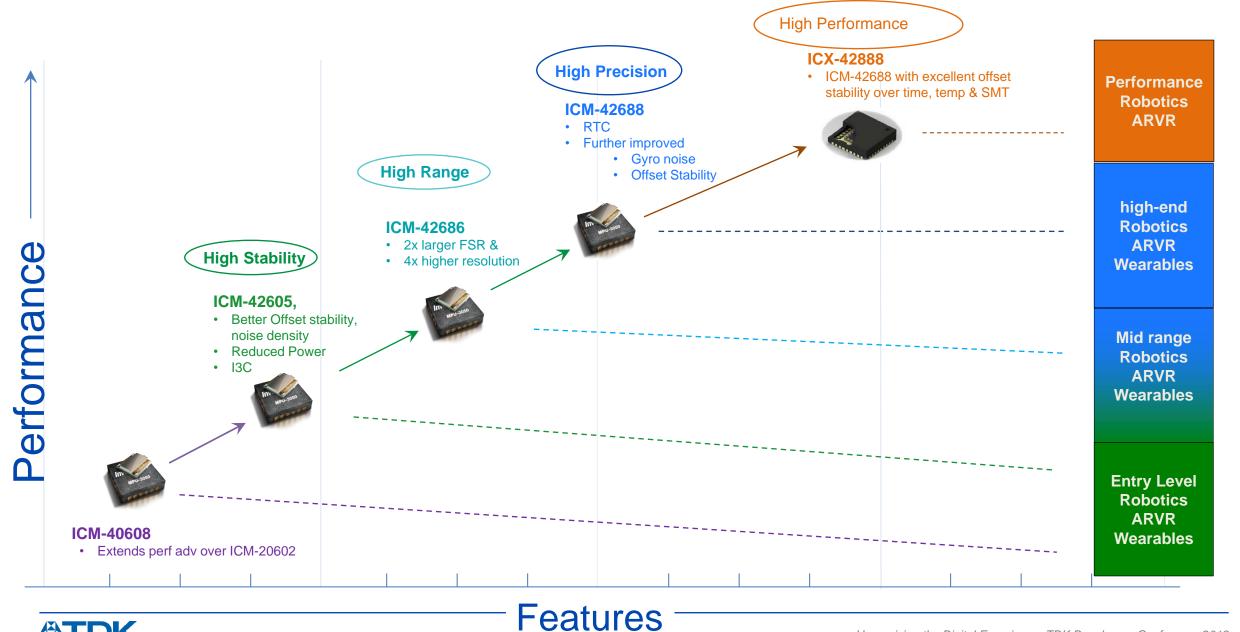
TDK Motion Sensors: Leadership for every Application

公TDK



Humanizing the Digital Experience: TDK Developers Conference 2018

Consumer Products with TDK Motion Sensors

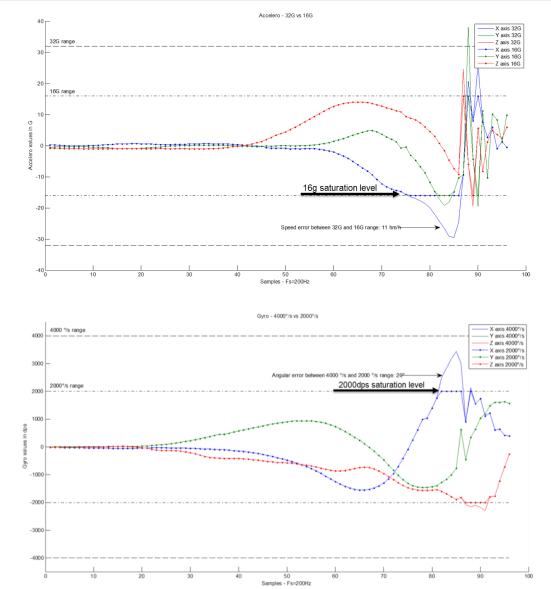


Consumer Motion Sensor Roadmap

Motion Sensor Use Cases for VR

Humanizing the Digital Experience: TDK Developers Conference 2018

Problem of Saturation


- Both accel and gyro sensors saturate during fast
 linear or rotational acceleration
- Motion Underestimation

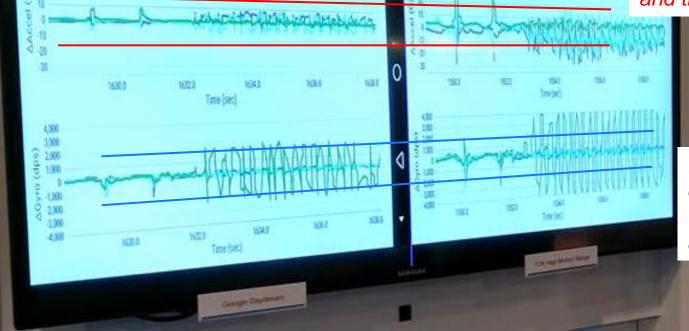
DK

- ¬In saturation, accel/gyro underestimate real acceleration and rotation
- Effect: Virtual to Physical divergence
- Virtual and Physical pose and positions diverge, rendering game unplayable

Only ICM-42686 supports any motion: 32g accel and 4000dps gyro FSR

VR/AR use case: keeping track

Fast movement easily creates acceleration >16g Traditional 6-axis saturate and the game is over


> Fast movement easily creates rotation >2000dps Traditional 6-axis saturate and the game is over


```
⊗TDK
```

C + D Y F

Daydream controller

8 • 8 • 53% \$1223 PM + ? 0

ICM-42686

• 19-bit output for highest resolution gyro motion sensing at any FSR

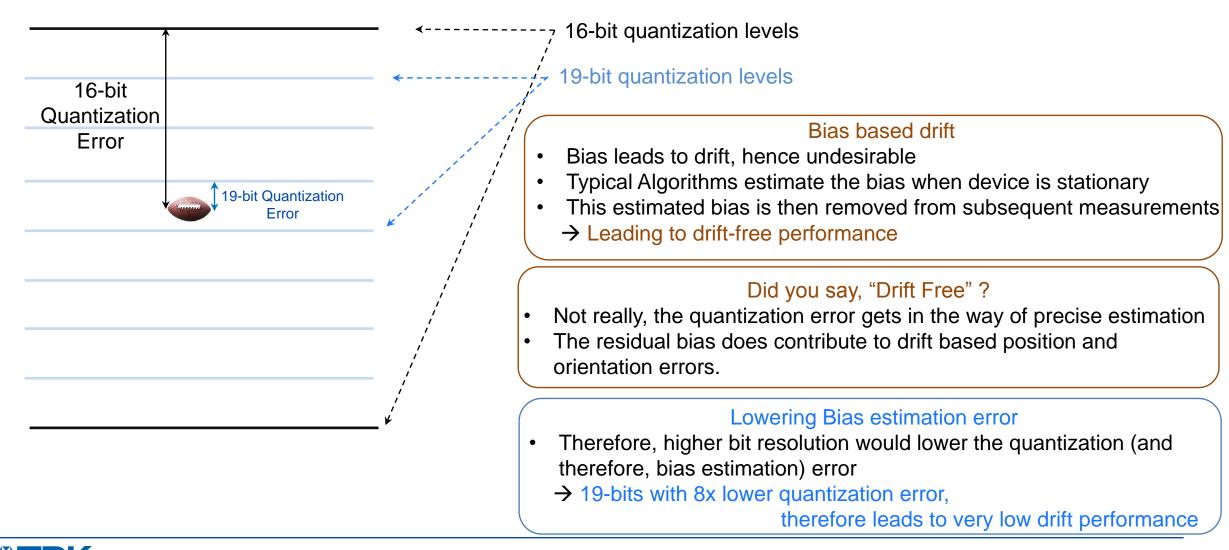
FSR \ output	Sensitivity @ 16-bit	Sensitivity @ 19-bit	Part #
2000dps	61 mdps/bit	7.6 mdps/bit	ICM-42686, ICM-42688
4000dps	122 mdps/bit	15.2 mdps/bit	ICM-42686 only

 \rightarrow 42686 resolution @ 4000dps FSR is 4x higher than BMI/ST resolution @ 2000dps

• 18-bit output for highest resolution linear acceleration sensing

FSR \ output	Sensitivity @ 16-bit	Sensitivity @ 18-bit	Part #
16g	0.488 mg/bit	0.122 mg/bit	ICM-42686, ICM-42688
32g	0.976 mg/bit	0.244 mg/bit	ICM-42686 only

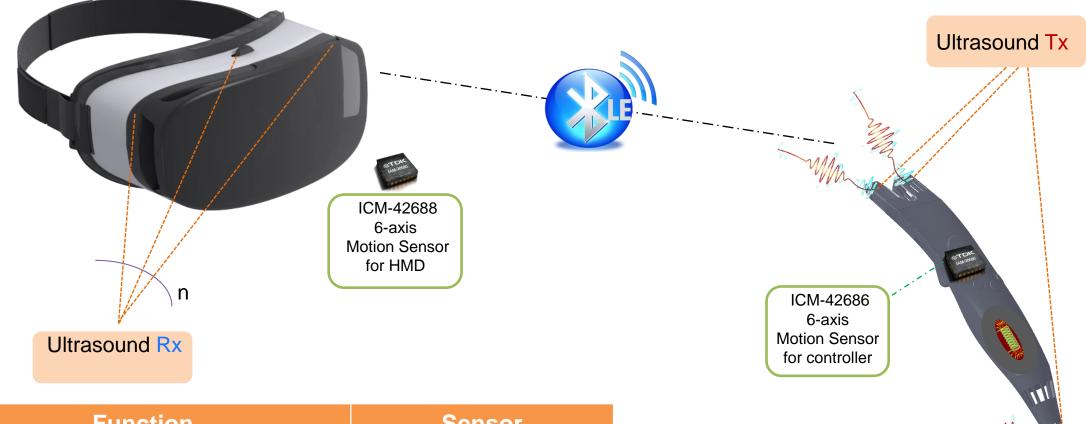
- Drift performance improved significantly with high accuracy bias estimation
 - \neg 8x better resolution in gyro bias estimation, 4x better resolution in accel bias estimation
 - Enhanced in-run calibration and factory calibration


• Low latency enabled by low noise figures (2.8mdps/ \sqrt{Hz} , 75ug/ \sqrt{Hz})

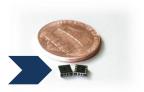
- Less averaging required in software

Bias estimation as a function of bit resolution

VR Headset & controller alignment is a key requirement for a good VR gaming experience:


- Optical SLAM solutions are limited by line-ofsight requirement, cost and power consumption
- New InvenSense/Chirp 6DOF reference design provides leading performance at lowest BOM cost

ICM-4268x 6DOF : maintaining alignment



Function	Sensor		
6DOF position & orientation tracking	ICM-42686 6-axis		
3D spatial position 'correction'	Chirp Ultrasound		
Communication and sync	BLE		

公TDK

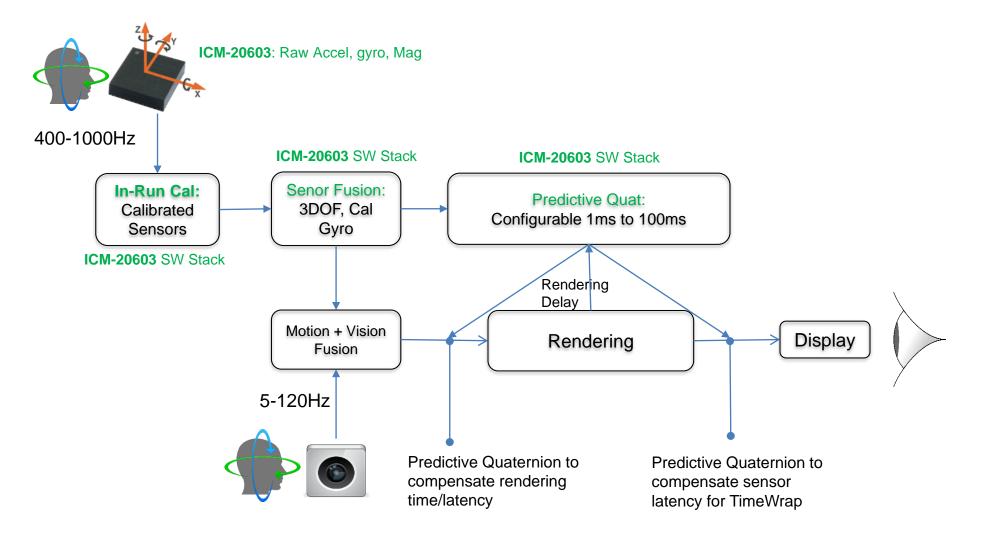
Chirp

- Sonar on a chip
- Integrated DSP chip 100x lower power
- Millimeter-sized sensor 1000x smaller
- Same great range finding performance

- ICM-42686 6-axis motion sensor for high-performance VR controllers
- Leverages the superior accel & gyro performance (noise, thermal stability) of the ICM-4260x series
- Provides extended motion measurement range for accel (up to 32g) and gyro (up to 4000 dps)
 - Avoids saturation during performance motion sensing and without loss of precision during minimal motion sensing
 - This enables precise and continuous motion sensing for performance sports and VR/game controller applications
- Wake-on-motion enables APEX (motion/gesture/fusion) post-processing
 - 42686 operates in low-power accel only mode until wake-on-motion event is sensed (programmable threshold)
 - Host interrupt spawns programmable accel/gyro measurement settings or returns to low-power accel sensing
- Adds unprecedent 19-bit output for highest resolution gyro motion sensing at any FSR
 - o 42686 resolution for 4000dps FSR is 4x higher than BMI/ST resolution is for 2000dps

FSR \ output	16-bit – 4268x	19-bit – 4268x
2000dps	61mdps/bit	7.6mdps/bit
4000dps	122mdps/bit	15.2mdps/bit

- ICM-42686: availability
 - ¬ ES samples Now and MP in Q4'18



Developed for Virtual Reality applications

- Algorithms:
- Sensor Fusion
- In-Run Calibration

HMD, Controller Processing with ICM-20603, ICM-42688

HUMA

DIGITAL F

In-Run Offset Calibration for "Head" or VR Remote Use Case

Accelerometer

- Eliminate the need for highly controlled multi-orientation factory calibration
- Eliminate need of calibrating at multiple temperatures

Magnetometer

 Eliminate un-natural head motion for calibration, e.g. figure-8, etc, as required by typical mag calibration algorithms

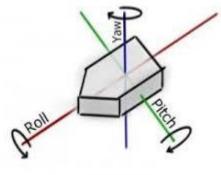
Gyroscope

- In-use bias tracking reduces residual absolute bias error to <0.2dps
- No need for device to be perfectly stationary, e.g. on table, after power on
- No motion bias calibration also available with <0.01dps accuracy

ICM-426xx

for Robotic Cleaners

TDK Developers Conference September 17-18, 2018 Santa Clara Marriott

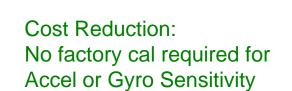

Cleaning Robot Orientation Errors

Orientation (Yaw) errors in Cleaning Robots

- \circ $\,$ Cause poor coverage of floor area
- Require multiple passes over the floor to get full coverage
- Yaw errors are caused by
 - ¬ Gyro Sensitivity
 - $\circ~$ Measured rotation differs from actual rotation by a small percentage
 - ¬ Gyro Bias
 - $\circ~$ Yaw drift over an hour can be significant
 - $\circ~$ This is caused by Gyro Bias
 - Every motion sensor has a non-zero Bias
 - Gyro Bias drifts over time and temperature (Robot can heat up by 20°C))

¬ Robot tilt

- $\circ~$ Caused when using gyro only design
- $\circ~$ Change in pitch/roll confuses Yaw in 1-axis and 3-axis devices
- \rightarrow Yaw error and drift should be minimized for better Robot Orientation



ICM-42688: Leadership in Robotics

Industry Leading 6-axis IMUs: Corona XLII Corona XLII is a family of highest performing 6-axis IMUs Unparalleled Noise performance: 2.8 mdps/rtHz Lowest Sensitivity Error: 0.5% Lowest Bias: 0.5dps Lowest Bias Temperature Coefficient: 5mdps/°C Lowest Accel Bias: 40mg

→ TDK Software Algorithm significantly reduces Bias contribution to Yaw Error
 → TDK Corona XLII in combination with TDK Software Algorithm provides best-in-class Robot orientation performance

Motion Sensor Use Cases for Wearables

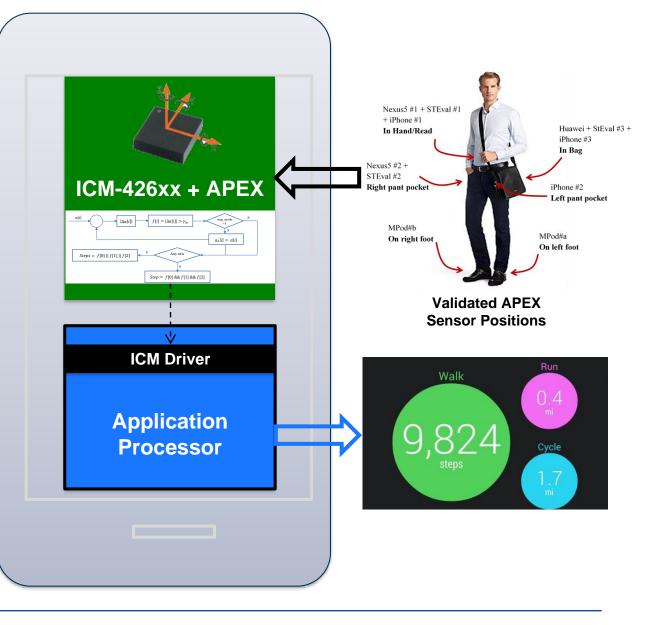
Humanizing the Digital Experience: TDK Developers Conference 2018

ICM-426xx: Leadership in Wearables

- Leading 6-axis performance
- Low-power accel with WOM
 - ✓15uA Accel LP mode
- **APEX**: the most advanced Motion Engine for Wearables
- Algo library for any motion
- 'Look-at-screen' gesture
- Extended range/resolution for any motion
- Fine-grained accel-gyro sync
- Internal 6-axis sensor-fusion
- External sensor-sensor fusion
- Complete HW/SW solution

Wearable algorithms

Category	SW Feature/Support	
	Activity Classifier: Walk, Run, Bike, Still	ri ri
	Walk/Run Step Counter	
	Walk/Run Time Accrual	
	Stand/Sit Time Detect/Accrual	
Fitness	Calorie Counter based on Activity (Energy Expenditure)	
	Distance (walk/run)	
	Floors Climbed	13
	Stairs Climbed	
	Shake	2 0
Costuras	DoubleTap preceded by Bring-to-see	I Tool I
Gestures	Bring-to-see	
	Put Hand Down -> screen off	PLA .
	Longtime Sit Alert, Sedentary Alert	a a a a a a a a a a a a a a a a a a a
Wellness	Sleep Analysis (Manual Entry)	ل الم
	Motion compensated Heart Rate Monitor and Variability	ア



 ICM-426xx includes a high-performance, low-power Motion HW engine for pedometer step-counting and major motion gestures/WOM

 The APEX HW Motion Engine offloads the AP from lower-level house-keeping in a very power efficient way

 Hosted Algorithm to enhance performance in special cases, such as slow walk

公TDK

- •Fully configurable HW Pedometer
- Supports all key WeChat requirements
- Lowest in-class false positives for biking and transportation
- Below 5% step count error on an average for typical walk and run
- •The only HW Pedo that also reports
 - ¬ Cadency
 - Walk/run classification

Config Parameter	Units and Default setting	Range	
Step_Thres	 Peak threshold value of a valid step 	[40, 100] mg	
Step_buf_Thres (Pedometer)	 Minimum number of steps that must be detected before step count increments 	[5, 15]	
Low_Step_buf_ thres (Pedometer Low-Latency)	thresMinimum number of low latency steps beforethe pedometer step count begins incrementing		
Step_buf_timer_ thres	 Duration of non-walk period to exit the current walk mode. 	[1.5, 6] seconds	

Algorithm Enhanced APEX Pedometer and HW-only Pedometer

Optimized WeChat Configuration

Common WeChat	Cadency range	AP	EX	LSM6DS3	Nexus eval	iPhone i(OS 10.3.2
Pedometer DB	(step/s)	Mean	Std	Mean	Std	Mean	Std
Algo-enhanced slow walk	0.8-1.3	44,6%	17,2%	75,7%	12,8%	42,4%	21,7%
HW Pedo based normal/fast	1.5-1.7	2,7%	1,7%	6,7%	3,6%	1,8%	1,5%
HW Pedo based run	2.3-2.6	4,0%	2,5%	8,7%	5,1%	0,9%	1,0%

Stop orror in %

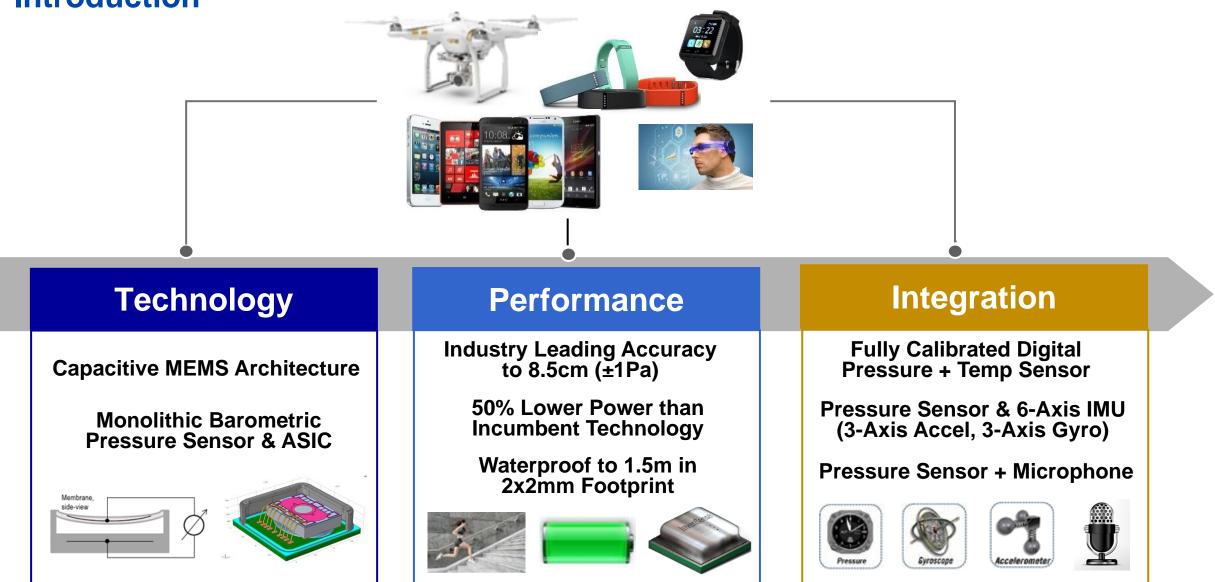
- APEX HW Pedometer Performance for WeChat walk/run is good, and the pedometer will rely exclusively on the APEX Motion Engine for these use-cases
- If the APEX Motion Engine detects 'special use-cases' like "slow-walk" then specially tuned APEX algorithms can be made available for integration into the AP to complement the HW pedometer performance, and provide highest accuracy for all use-cases!

- ICM-426xx 6-axis motion sensor for high-performance wearable and hand-held devices
- Industry leading accel & gyro performance (noise, thermal stability)
- ¬ Wake-on-motion enables APEX (motion/gesture/fusion) post-processing
 - 426xx operates in low-power accel only mode until wake-on-motion event is sensed (programmable threshold)
 - Host interrupt spawns programmable accel/gyro measurement settings or returns to low-power accel sensing
- ¬ APEX (motion/gesture/fusion) post-processing algo library for host-based applications
 - The APEX library provides proven performance and easy implementation of key applications
 - Gestures: detection, identification and action
 - Activities: detection, classification and tracking
 - 6-axis sensor-fusion: measures and extrapolates movement and rotation
 - External sensor-fusion for heading (with compass) and elevation change (with pressure sensor)
 - EIS solutions for professional, shake-free video recordings (for watches including cameras)
- ICM-426xx: availability
- ES samples Now and MP in Q4'18

Stair Climbing use case for Wearables

Barometer

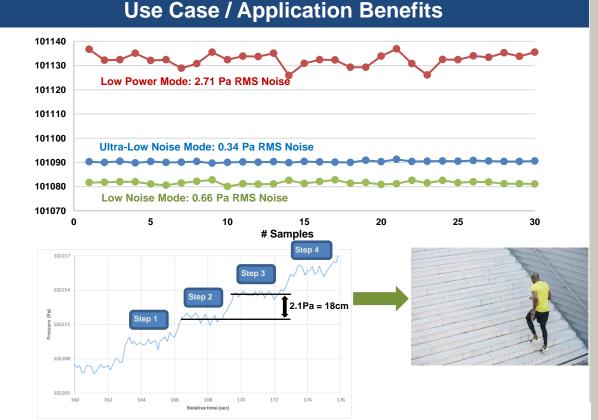
Barometer + Pedometer



Barometer

TDK-InvenSense Barometric Pressure Sensors

Introduction

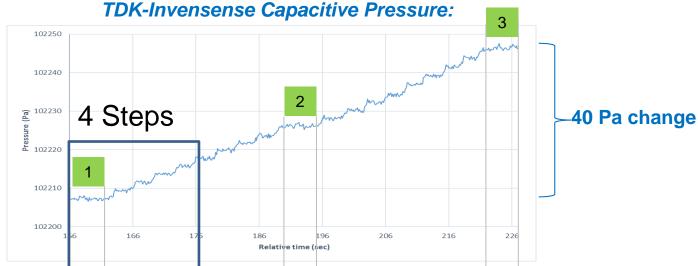

ICP-101xx Pressure Sensor based Activity Identification HUMANIZING THE

Pressure (Pa)

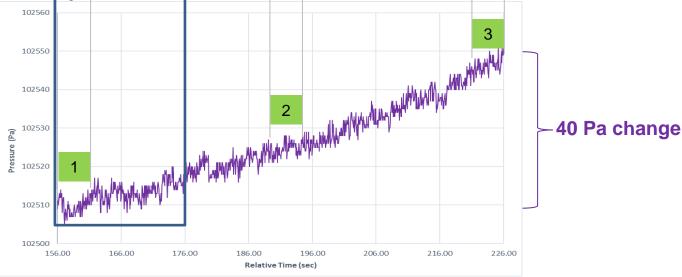
Meeting Every Application Need

- Monitor Z-height to identify:
 - Path of travel (stairs, escalator, elevator): resolution
 < 1 stair, ~10cm
 - Type of Fitness Activity: resolution << arm movement radius (~10cm)
 - Fall Detection: resolution < chair seat height (~25cm)
- < 5uA to increase functionality without penalty to battery life
- >20Hz sample rate to effectively monitor high speed motion
- Package height <1mm and small footprint for space constrained applications
- Waterproof to IPx8 (1.5m) OR ~5atm by waterproof industrial design

Solution Benefits			
Key Challenges	ICP-101xx Benefits		
Measure relative height change <10cm	Pressure Noise RMS: 2 modes of operation: 0.8 Pa RMS & 0.4Pa RMS		
Activity identification of small form factor wearables with limited battery capacity	<7cm resolution at 5uA		
High sample rate – monitor arm movements, stair running	Sample rate of 48Hz at 0.8Pa RMS		
Manufacturing contaminant resistance, water resistance	Three 0.025mm vents eliminate manufacturing contaminants, waterproof to 1.5m depth		


ICP-101xx Benefits in Fitness Tracking:

- Better caloric monitoring by identifying type of activity
- Improved features (path of travel) without battery life penalty
- No additional manufacturing considerations to prevent cavity contamination or water intrusion up to 1.5m

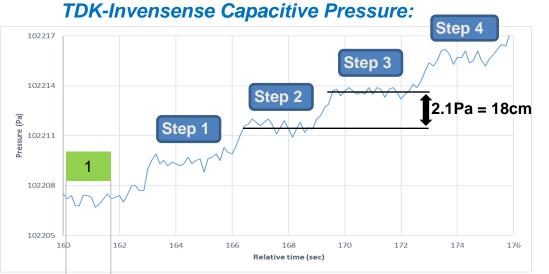

公TDK

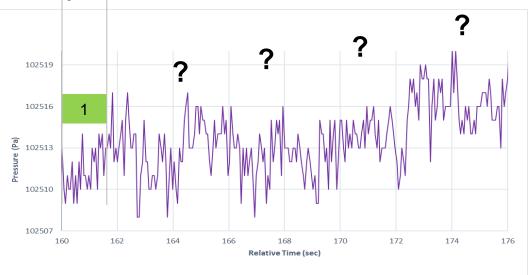

TDK-InvenSense Capacitive Pressure Sensor

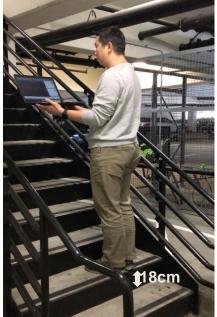
Lowest Pressure Noise & Relative Accuracy

Competitor B Piezoresisitive Pressure Sensor:

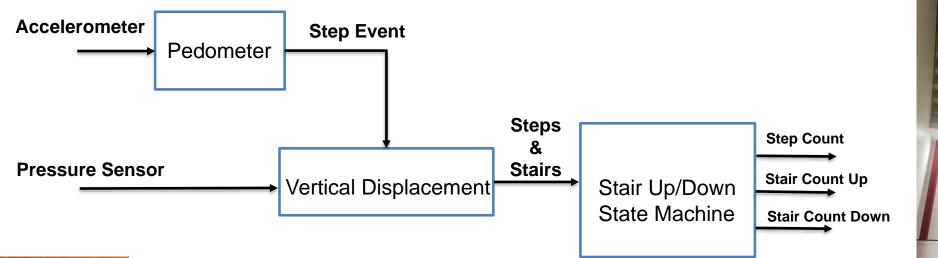
ITAI FXPFR


TDK-InvenSense Pressure Sensor Detects Individual Stair Steps


TDK-InvenSense Capacitive Pressure Sensor


Lowest Pressure Noise & Relative Accuracy

Competitor B Piezoresisitive Pressure Sensor:

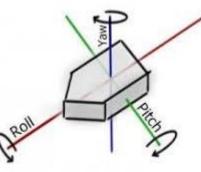


TDK-InvenSense Pressure Sensor Detects Individual Stair Steps

Pedometer + Pressure Sensor Algorithm

Setup and Data Collection

- Hardware: Google Nexus 5 Smartphone: Populated with ICP-101xx Pressure Sensor
- Pressure Sensor: Ultra-Low Noise Mode, 10 Hz Output Data Rate
- Data Collection
 - 10 Users Carrying Two Phones: 1 in hand and 1 in pocket
- Activity
 - o 2 Trip walk up and down 8 Floors in Stairwell
 - o 2 Trip Flat walk across Building


Motion Sensor Use Cases for Appliances

Humanizing the Digital Experience: TDK Developers Conference 2018

> Problem

- Washer/Dryer leveling is an issue for new installations or relocation
- Without guidance, level adjustment can take time and cost money
- Generally done by experienced installers/repairmen
- Level can also shift over time
 - Resulting in vibrations and inefficient operation
 - Helps in keeping Motor Horizontal/Vertical

Solution

- ✓ 6-axis IMU mounted to Washer/Dryer frame can detect inclination in pitch and roll to help professional or self-install.
- Detection of inclination is continuous, alerting owner of shifts throughout lifetime of product

Benefits from Low noise, high sensitivity 6-axis sensor, ICM-42688

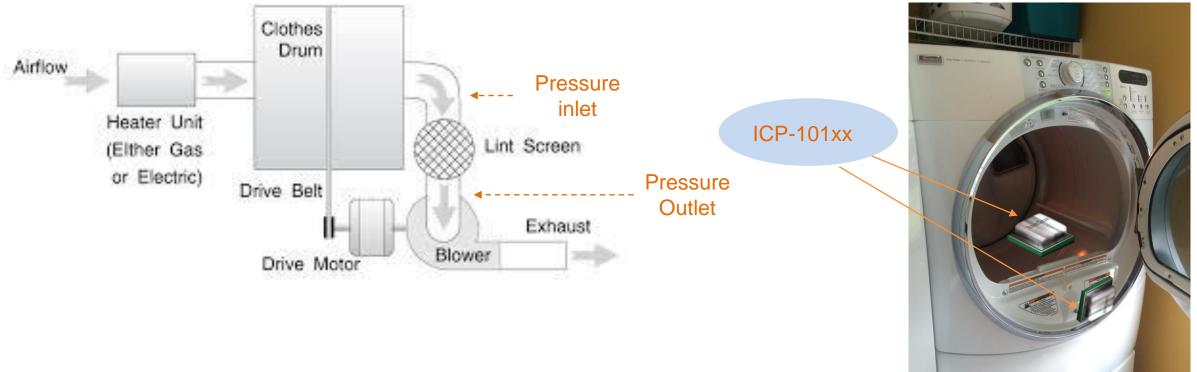
Balance a Washing Machine Drum

> Problem

- Unbalanced Drum causes:
 - Excessive vibration
 - Inefficient operation
 - Leading to Motor/spindle damage
 - Human detection of such vibration is very late
 - Problem builds up over time

Solution

- ✓ 6-axis IMU mounted to Washer/Dryer frame can efficiently detect small changes in vibration (3D wobble) that builds up over time
- IMU can therefore provide early warning to owner and provide guidance for timely correction
- IMU can also flag unbalanced load and warn the user to correct the loading


Benefits from Low noise, high sensitivity 6-axis sensor, ICM-42688

Dryer Lint Detection

Problem: Detecting Lint build up

Solution

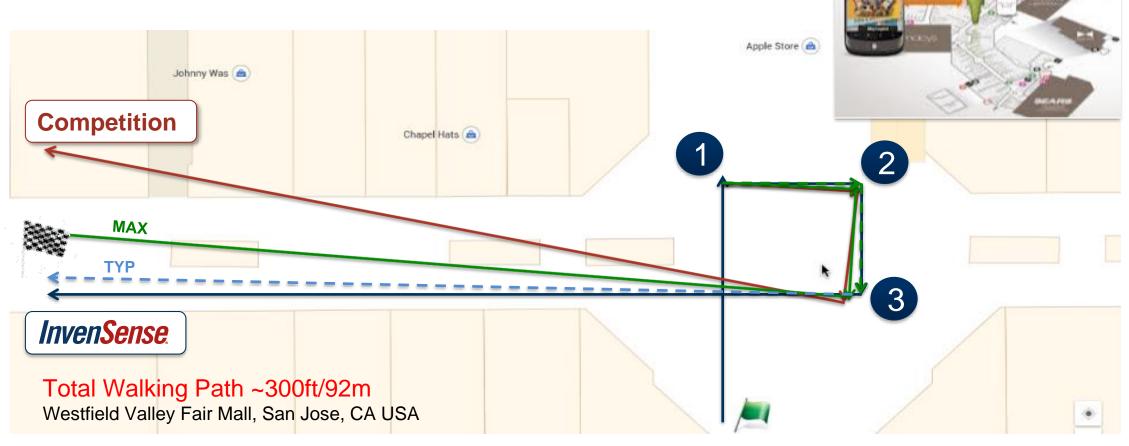
✓ Differential Pressure sensing to detect blockage by lint

 \mathbf{x}

✓ Lint Buildup

function of [Pressure inlet – Pressure outlet]

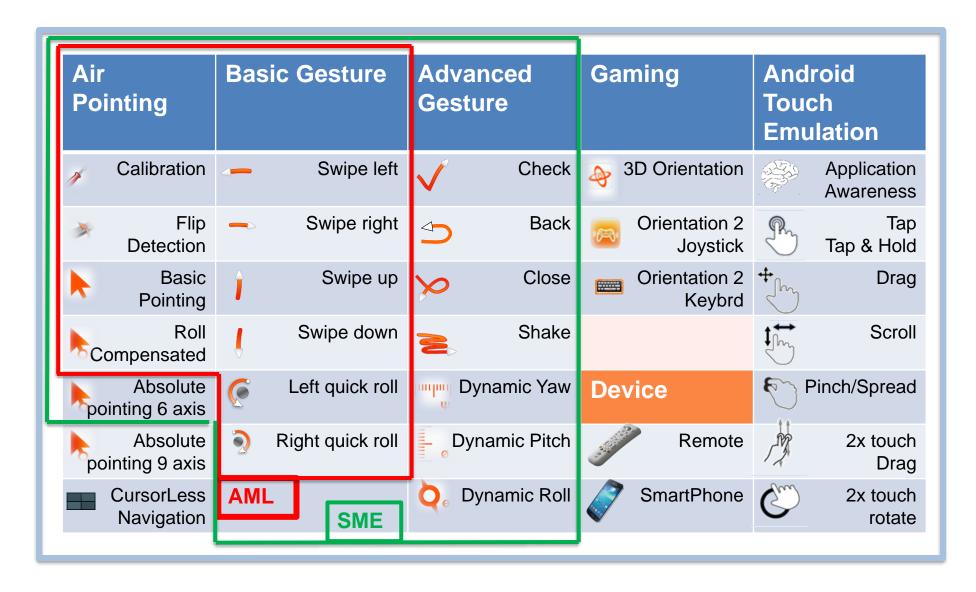
Benefits from Low noise, high sensitivity pressure sensor, ICP-101xx



Pedestrian Dead Reckoning Motion Sensor Use Cases

Cumulative error after 3 x 90° turns

- 0.3% (TYP) sensitivity = 0.81° cumulative heading error ($0.27^{\circ} \times 3$)
- 1% (MAX) sensitivity = 2.7° cumulative heading error ($0.9^{\circ} \times 3$)
- 3-4% sensitivity = 10.8° cumulative heading error ($3.6^{\circ} \times 3$)



Other Motion Sensor Use Cases

TDK HRM Algo exceeds (Wear OS) requirements

HUMANIZING THE DIGITAL EXPERIENCE

HRM engine bpm performance summary

Results based on 118 data logs known to have good PPG signal quality

Test Definitions	Mean Absolute Error (MAE) [bpm]	
	Android Specs	TDK
Sedentary Heart Rate	< 5.00	2
Indoor Walking	< 5.00	3.4
Running	< 7.50	4.1
Elliptical	N/A	2.6
Combined	N/A	3.8

HRM Algo	MIPS	Size	
		Code	Data
TDK (Cortex M4 Lib)	1	14KB	15KB

Problem

Motion can affect PPG/HRV sensor's ability to measure accurately. But people cant be still, adults or kids ! Solution

TDK HRM Algo efficacious in accurately detecting and removing the extraneous effects of motion from PPG signal, allowing continuous monitoring even while wearer is active.

Other IoT use cases for Motion Sensing

Self Balancing Scooters/Hoverboards

Fall Detection

Smart Toothbrush

SLAM/Toy Robot

Smart Screwdriver

Motion Compensation for Haptic signal

Motion Compensation for PPG sensor

3D pen for AR, AR Glasses

Use cases from your market

Motion Sensor Software

Software: Embedded (eMD) & Android

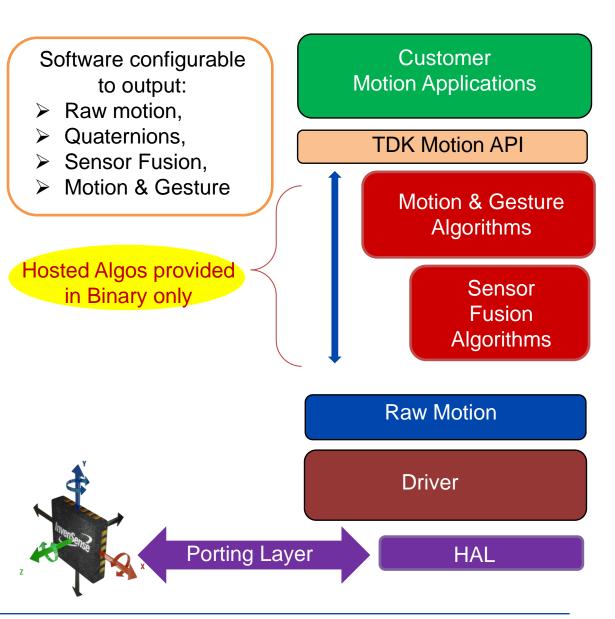
Device Drivers in Source code

- OS independent for Embedded Systems
- Android/CHRE compliant for Google ecosystem

Algorithms

- Binary only
- Source code negotiable for strategic customers
- Android compliant for Google ecosystem

Security


- Software authenticates TDK parts
 - o through various security schemes detailed in table

Embedded CPUs (Hosts) supported

- Cortex M0, M0+..M4, Atmel G55, Nucleo (ST), Ambiq, ARC (EM5)
- Porting to other CPUs requires Board Support Package (BSP) modifications: I2C, SPI, timers ...

• Toolchain support

¬ GCC, IAR, Keil, CHRE, Android

Conclusion

Best in class Performance (ICM-426xx)

- Industry's Lowest noise
- Industry's Highest range
- Industry's Highest bit resolution
- Industry's Lowest temperature coefficient
- Very low power

- @ 2.8mdps/ \sqrt{Hz} , 75ug/ \sqrt{Hz}
- @ 4000dps, 32g
- @19bits
- @ 0.15mg/°C, 5mdps/°C
- @15uA with Wake-on-motion
- Unique Internal fine-grained synchronization of accel/gyro and external sensors (RTC clock based)
- Combo sensors: 7-axis Pressure+6-axis Motion, 9-axis Magnetometer+6-axis Motion

Algorithms Expertise

 TDK provides rich set of algorithms finely tuned to TDK motion and pressure sensors — Enabling new applications, such as stair climbing, gestures

Software Frameworks and CPU

• Experience with Android, CHRE, Linux frameworks and a wide array of Microcontrollers, CPUs

System Architecture

Deep system architecture knowledge to enable a wide range of products

ICM-426xx: Algorithms for Wearables & Handhelds

Class	Algorithm	Example Use Cases	Available
Sensor Fusion	6-Axis fusion, GRV, Quaternion	Describing motion in 3D space	MP Now
	9-axis fusion, RV, Quaternion	Describing motion in 3D space with Heading information	MP Now
	Predictive Quaternion	Latency Reduction	MP Now
	Linear Acceleration, Gravity Vector	Application dependent	MP Now
Gestures	Gestures with IMU	Application dependent	MP Now
	Gestures with Ultrasound	Touchless Gestures	ES Now, MP TBD
	Pointing remote gestures	STB, TV, Appliance pointing remote	MP Now
	Tap, multi-Tap	User interface	MP Now
Motion & Activity	Basic Activity Classification	Activity Monitoring	MP Now
	Stair (and Step) counting with IMU, Pressure	More accurate Caloric expenditure, exercise regimen	MP Now
	Significant Motion detection	Power saving, anomaly detection	MP Now
	Tilt	Pose detection	MP Now
	HRM, HRV sensing with Motion Artifact removal	Health monitoring	MP Now
Calibration	Accel, Gyro (motion & stationary), Mag	In-run calibration	MP Now
	Factory Calibration expertise	Extensive experience to provide guidance	Now
ΙοΤ	Vibration detection	Condition Based Monitoring	ES TBD
	Differential Pressure	Building/Home Security	MP Now

Thank You!

