GENERAL DESCRIPTION

The T5808 is a multi-mode, low noise digital MEMS microphone in a small package. The T5808 consists of a MEMS microphone element and an impedance converter amplifier followed by a fourth-order Σ - Δ modulator. The digital interface is a MIPI Alliance SoundWire[®] compliant interface which allows bi-directional data flow.

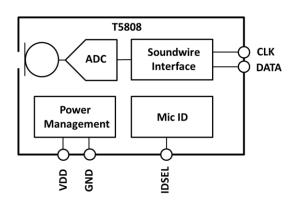
The T5808 has multiple modes of operation: High Quality, Low Power Listen (Always-On), Concurrent and Idle (sleep). The T5808 has high SNR and high AOP in all operational modes.

The T5808 is available in a standard $3.5 \times 2.65 \times 0.98$ mm surface-mount package. It is reflow solder compatible with no sensitivity degradation.

APPLICATIONS

- Smartphones
- Microphone Arrays
- Smart Speakers
- Headsets
- Tablets and Notebook PCs

FEATURES


SPEC	HIGH QUALITY MODE	LOW POWER LISTEN			
		MODE			
Sensitivity	-41 dB FS ±1 dB	-26 dB FS ±1 dB			
SNR	66 dBA	62 dBA			
Current	650 μA	215 μΑ			
AOP	135 dB SPL	120 dB SPL			
Microphone Data Rate	2.4 Mbps or 3.072 Mbps ¹	0.6 Mbps or 0.768 Mbps ¹			
SoundWire Bus	Integer Multiple of Microphe	one data rate up to 9.6 MHz or			
Clock Frequency	12.288 MHz				

T5808

Note 1: Acoustic performance for 2.4MHz, 0.768MHz

- 3.5 × 2.65 × 0.98 mm surface-mount package
- Extended frequency response from 40 Hz to 20 kHz
- Low power: 215 μA in Low Power Listen Mode
- Sleep (ClockStop) Mode: 9 μA
- MIPI Alliance SoundWire Slave v1.1 compliant
- IDSEL pin for multi-microphone enumeration (up to 7 devices)
- Compatible with Sn/Pb and Pb-free solder processes
- RoHS/WEEE compliant

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

PART	TEMP RANGE	PACKAGING
MMICT5808-00-012	–40°C to +85°C	13" Tape and Reel

⊗TDK

TABLE OF CONTENTS

1
1
1
1
1
2
4
4
4
4
5
5
5
6
6
6
7
7
9
9
1
1
2
2
2
3
3
3
4
5
6
6
6
7
9
9
5
8

⊗TDK

T5808

Absolute Maximum Ratings	
Table 21. Absolute Maximum Ratings	
ESD Caution	
Soldering Profile	
Table 22. Recommended Soldering Profile*	
Pin Configurations And Function Descriptions	
Table 23. Pin Function Descriptions	
Typical Performance Characteristics	
Supporting Documents	
Application Notes – General	
PCB Design And Land Pattern Layout	
PCB Material And Thickness	
Handling Instructions	
Pick And Place Equipment	
Reflow Solder	
Board Wash	
Outline Dimensions	
Ordering Guide	
Revision History	40

TABLE 1. ACOUSTICAL/ELECTRICAL CHARACTERISTICS – GENERAL

 $T_A = 25^{\circ}C$, $C_{LOAD} = 60 \text{ pF}$ unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
PERFORMANCE						
Directionality		Omni				
Output Polarity	Input acoustic pressure vs. output data		Non-Inverted			
Supply Voltage (V _{DD})		1.62	1.8	1.98	V	

TABLE 2. ACOUSTICAL/ELECTRICAL CHARACTERISTICS - MODE 1-1 (HIGH QUALITY MODE)

 $T_A = 25^{\circ}$ C, VDD = 1.8 V, $f_{swclk} >= 2.4$ MHz (Note 2), Mic Data Rate = 2.4 Mbps or 3.072 Mbps, $C_{LOAD} = 60$ pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Sensitivity	1 kHz, 94 dB SPL	-42	-41	-40	dB FS	2
Signal-to-Noise Ratio (SNR)	20 kHz bandwidth, A-weighted		66		dBA	
Equivalent Input Noise (EIN)	20 kHz bandwidth, A-weighted		28		dBA SPL	
Dynamic Range	Derived from EIN and acoustic overload point		107		dB	
Total Harmonic Distortion (THD)	94 dB SPL		0.1		%	
Power Supply Rejection (PSR) Sine	1 kHz Sine Wave		-117		dB FS	
Power Supply Rejection (PSR)	217 Hz, 100 mV p-p square wave		114		dB FS	
Square	superimposed on VDD = 1.8 V, A-weighted		-114		(A)	
Acoustic Overload Point	10% THD		135		dB SPL	
Supply Current (Idd)	V_{DD} = 1.8 V, f_{swclk} = 2.4 MHz, No load		650		μΑ	3
Supply Current (Idd)	V _{DD} = 1.8 V, f _{swclk} = 2.4 MHz, 5 pF load		671		μA	3
Supported Ports						
Data Port 1 (High Quality Mode)	Active					
Data Port 2 (Low Power-Listen	Disabled					
Mode)	Disabled					
Control Port	Active					

Note 2: Sensitivity is relative to the RMS level of a sine wave with positive amplitude equal to 100% 1s density and negative amplitude equal to 0% 1s density. **Note 3:** f_{swclk} should be an integer multiple of the desired Mic Data Rate see table 14 with permissible f_{swclk} and Mic Data Rates.

TABLE 3. ACOUSTICAL/ELECTRICAL CHARACTERISTICS - MODE 1-2 (LOW POWER LISTEN MODE)

 $T_A = 25^{\circ}$ C, VDD = 1.8V, $f_{swclk} >= 0.6$ MHz (Note 2), Mic Data Rate =0.6 Mbps or 0.768 Mbps $C_{LOAD} = 60$ pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES	
Sensitivity	1 kHz, 94 dB SPL	-27	-26	-25	dB FS	2	
Signal-to-Noise Ratio (SNR)	8 kHz bandwidth, A-weighted, f _{swclk} = 0.768MHz		62		dBA	3	
Equivalent Input Noise (EIN)	8 kHz bandwidth, A-weighted, f _{swclk} = 0.768MHz		32		dBA SPL		
Signal-to-Noise Ratio (SNR)	8 kHz bandwidth, A-weighted, f _{swclk} = 0.600MHz		60		dBA	3	
Equivalent Input Noise (EIN)	8 kHz bandwidth, A-weighted, f _{swclk} = 0.600MHz		34		dBA SPL		
Dunamia Banga	Derived from EIN and acoustic overload point,		88	00	dB	٩D	
Dynamic Range	f _{swclk} = 0.768MHz		00	-25	ив		
Total Harmonic Distortion (THD)	94 dB SPL		0.1		%		
Acoustic Overload Point	10% THD		120		dB SPL		
Supply Current (L.)	V _{DD} = 1.8 V, f _{swclk} = 0.6 MHz , no load		215		μΑ	3	
Supply Current (Idd)	V_{DD} = 1.8 V, f_{swclk} = 0.6 MHz , 5 pF load		220		μΑ	3	
Supported Ports							
Data Port 1 (High Quality Mode)	Disabled						
Data Port 2 (Low Power-Listen	Active						
Mode)	Active						
Control Port	Active						

Note 2: Sensitivity is relative to the RMS level of a sine wave with positive amplitude equal to 100% 1s density and negative amplitude equal to 0% 1s density. **Note 3**: f_{swclk} should be an integer multiple of the desired Mic Data Rate see table 14 with permissible f_{swclk} and Mic Data Rates.

☆TDK

TABLE 4. ACOUSTICAL/ELECTRICAL CHARACTERISTICS – MODE 1-3 (CONCURRENT MODE)

 $T_A = 25^{\circ}$ C, VDD = 1.8 V, $C_{LOAD} = 60$ pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Supply Current (Idd)	V_{DD} = 1.8 V, f_{swclk} = 2.4MHz , no load		775		μΑ	3
Supply Current (Idd)	V_{DD} = 1.8 V, f_{swclk} = 2.4MHz , 5 pF load		796		μΑ	3
Acoustical/Electrical Specifications						
See Mode 1-1 Specifications for Port 1	Data					
See Mode 1-2 Specifications for Port 2 I	Data					
Supported Data Rates						
Data Port 1 (High Quality Mode)	Active					
Data Port 2 (Low Power-Listen Mode)	Active					
Control Port	Active					

Note 3: fswclk should be an integer multiple of the desired Mic Data Rate see table 14 with permissible fswclk and Mic Data Rates.

TABLE 5. ACOUSTICAL/ELECTRICAL CHARACTERISTICS – MODE 1-4 (IDLE 1, CONTROL ONLY)

 $T_A = 25^{\circ}C$, VDD = 1.8 V, $C_{LOAD} = 60 \text{ pF}$ unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Supply Current (I _{dd})	V _{DD} = 1.8 V, No load		31		μΑ	
	f _{swclk} = 0.6 MHz		31			
Supported Data Rates						
Data Port 1 (High Quality Mode)	Disabled					
Data Port 2 (Low Power-Listen Mode)	Disabled					
Control Port	Active					

TABLE 6. ACOUSTICAL/ELECTRICAL CHARACTERISTICS - MODE 2-2 (CLOCK STOP)

T_A = 25°C, VDD = 1.8 V, C_{LOAD} = 60 pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Supply Current (I _{dd})	V _{DD} = 1.8 V, no load f _{swclk} = Off		9		μA	4
Supported Data Rates						
Data Rate, Port 1 fDATA1	Disabled					
Data Rate, Port 2 f _{DATA2}	Disabled					
Control	Active					

Note 4: Mode 2-2 (Clock Stop) is notified through the SoundWire bus. When the clock restarts, the microphone will immediately enter Idle 1 Mode for ClockStopMode=0 OR re-sync and re-enumerate for ClockStopMode=1.

TABLE 7. ACOUSTICAL/ELECTRICAL CHARACTERISTICS - MODE 3-1 (SYNC AND ENUMERATION)

T_A = 25°C, VDD = 1.8 V, C_{LOAD} = 60 pF unless otherwise noted. Typical specifications are not guaranteed

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
	V _{DD} = 1.8 V, no load					
Supply Current (Is)	f _{swclk} = 0.6MHz (assumes mic id		350		μΑ	7
	1 and 0 only)					
Acoustical/Electrical Specifications						
No Signal						
Supported Data Rates						
Data Rate, Port 1 f _{DATA1}	Disabled					
Data Rate, Port 2 f _{DATA2}	Disabled					
Control	Active					
Enumeration Control						
Unique ID = 0	IDSEL pin state: Tied to GND		0		Ω	5,6
Unique ID = 1	IDSEL pin state: Tied to VDD		0		Ω	БС
	(max 1.98V)					5,6
Unique ID = 2	IDSEL pin state: Resistor to GND	25.7	27	28.3	kΩ	5,6
Unique ID = 3	IDSEL pin state: Resistor to GND	14.3	15	15.7	kΩ	5,6
Unique ID = 4	IDSEL pin state: Resistor to GND	7.8	8.2	8.6	kΩ	5,6
Unique ID = 5	IDSEL pin state: Resistor to GND	4.1	4.3	4.5	kΩ	5,6
Unique ID = 6	IDSEL pin state: Resistor to GND	2.1	2.2	2.3	kΩ	5,6
Tolerance of resistors			± 5		%	

Note 5: Unique ID refers to the 4 LSB bits in the SCP_DevID_0 register.

Note 6: Up to 7 T5808 slave devices can be configured by a single SoundWire master. See Sync & Enumeration section for details on slave enumeration. **Note 7:** Guaranteed by design

TABLE 8. ACOUSTICAL/ELECTRICAL CHARACTERISTICS – MODE 4-1 (POWER OFF, CLOCK ON)

T_A = 25°C, VDD = 1.8 V, C_{LOAD} = 60 pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Supply Voltage (VDD)				1.2	V	
Supply Current (Idd)	No load			9	μA	
Acoustical/Electrical Specifications						
No Signal						
Supported Data Rates						
Data Rate, Port 1 fDATA1	Any Clock		Disabled		Mbps	
Data Rate, Port 2 fDATA2	Any Clock		Disabled		Mbps	
Control	Inactive					

TABLE 9. ACOUSTICAL/ELECTRICAL CHARACTERISTICS - MODE 4-2 (POWER OFF, CLOCK OFF)

 $T_A = 25^{\circ}$ C, VDD = 1.8 V, C_{LOAD} = 60 pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Supply Voltage (V _{DD})				1.2	V	
Supply Current (Idd)	No load f _{swclk} = max 1kHz			9	μΑ	
Acoustical/Electrical Specifications						
Supported Data Rates						
Data Rate, Port 1 f _{DATA1}	Disabled					
Data Rate, Port 2 f _{DATA2}	Disabled					
Control	Inactive					

TABLE 10. ACOUSTICAL/ELECTRICAL CHARACTERISTICS - MODE 4-3 (POWER ON, CLOCK OFF)

T_A = 25°C, VDD = 1.8 V, C_{LOAD} = 60 pF unless otherwise noted. Typical specifications are not guaranteed.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Supply Voltage (VDD)		1.5	1.8	1.98	V	
Supply Current (Idd)	No load		9		μΑ	
	f _{swclk} = max 1kHz					
Acoustical/Electrical Specifications						
No Signal						
Supported Data Rates						
Data Rate, Port 1 fDATA1	Disabled					
Data Rate, Port 2 fDATA2	Disabled					
Control	Inactive					

TABLE 11. MODE TRANSITION TIMES

 $T_A = 25^{\circ}$ C, VDD = 1.8 V, $C_{LOAD} = 60$ pF unless otherwise noted. All transition times are from simulation and are typical specifications which are not guaranteed.

					TON	IODE				
		1-1	1-2	1-3	1-4	2-2	3-1	4-1	4-2	4-3
	1-1			100 µs	100 µs	100 µs		100 µs	100 µs	100 µs
ЭE	1-2			100 µs	100 µs	100 µs		100 µs	100 µs	100 µs
MODE	1-3	100 µs	100 µs		100 µs	100 µs		100 µs	100 µs	100 µs
2	1-4	10 ms	10 ms			100 µs		100 µs	100 µs	100 µs
FROM	2-2				100 µs		100 µs	100 µs	100 µs	100 µs
ш	3-1				100 µs			100 µs	100 µs	100 µs
	4-1									
	4-2									
	4-3									

Greyed out cells are either same mode, not allowed, or not specified

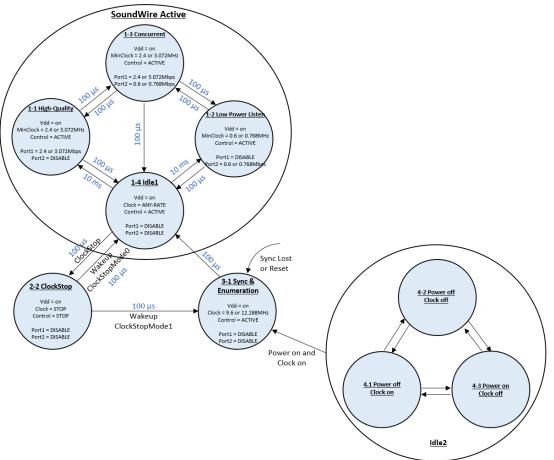


Figure 1. State transition diagram of available modes on T5808, transition time conditions described in Table 11.

TABLE 12. DIGITAL INPUT/OUTPUT CHARACTERISTICS

T_A = 25°C, 1.62V < VDD < 1.98V, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
Input Voltage High (V _{IH})		$0.65 \times V_{DD}$			V	
Input Voltage Low (V _{IL})				$0.35 \times V_{DD}$	V	
Output Voltage High (V _{OH})	$I_{LOAD} = 0.5 \text{ mA}$	$0.7 \times V_{DD}$	V _{DD}		V	
Output Voltage Low (V _{OL})	I _{LOAD} = 0.5 mA		0	$0.3 \times V_{DD}$	V	

TABLE 13. DIGITAL (PHY) INPUT/OUTPUT TIMING CHARACTERISTICS

T_A = 25°C, 1.7V < VDD < 1.9V, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
f _{swclk}	Input clock frequency	0.024		12.288	MHz	
t _{CLKIN} (t_1/f_Clock)	Input clock period	81		41,666	ns	
t_Slew_Clock	Clock Slew Time	2		5.4	ns	
Clock Duty Cycle	f _{SWCLK} < 12.288MHz	45	50	55	%	
t_ISetup_min_Data	Data input setup time			0	ns	7
t_IHold_min_Data	Data input hold time			4	ns	7
t_ZD_Data_Min	Data output enable time from initial clock edge	7.9			ns	
t_DZ_Data_Max	Data output disable time from subsequent clock edge			4	ns	
t_OV_Data_Max	Data output valid time			27.9	ns	

Note 7: Guaranteed by design

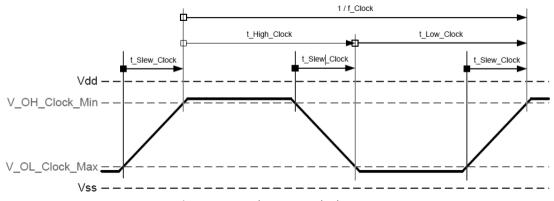
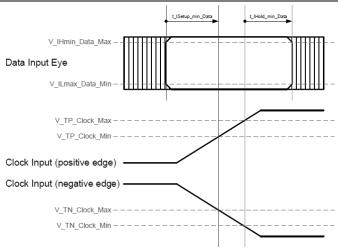
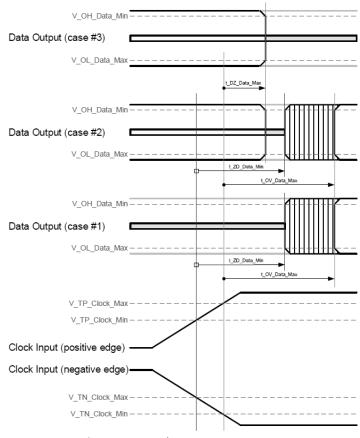
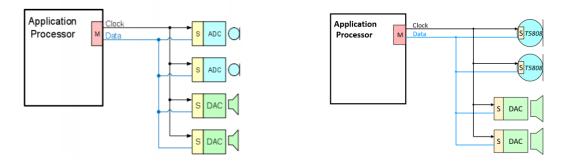




Figure 2. Digital Timing – Clock Output

SOUNDWIRE OVERVIEW

The following section provides an overview of SoundWire. For the detailed SoundWire spec, please review the MIPI SoundWire specification document.

SoundWire microphones provide an interface to transport both audio and control over a pin efficient interface. In older microphone interfaces, the control portion has either been provided by separate pin, interpreted from the audio bus or power supply pins, or not supported – leading to a limited ability to control microphone behavior. The ability of SoundWire microphones to control the microphone from a centralized point in the audio subsystem enables better overall functionality and the following features:


- Control of power mode of each microphone in the system using an explicit control instead of implicit control using power or clock pins.
- Transition between Low Power Listen mode and High Quality mode without interruption for continuous audio use cases (i.e. low-power voice activation).

The SoundWire interface provides the following key capabilities:

- Transport of the following over a single two-pin interface:
 - Payload data channels
 - Each slave microphone has 2 data ports. Depending on how the SoundWire devices are configured, a microphone on the bus can operate in High Quality mode, Low Power Listen mode or both.
 - Control information
 - Setup commands
- Support for microphone low latency PDM audio transport over the same link with other audio sources
- Support for multilevel power saving by enabling frequency changes, temporary clock stoppage, and wake up response to inband signaling
- Active indication of microphone device status including interrupt-style alerts

T5808 SOUNDWIRE MICROPHONE

The T5808 is a SoundWire v1.1 fully compatible microphone. It connects directly to the SoundWire bus without the need for an intermediary SoundWire ADC or Codec, as shown in the figure below. The T5808 is configured as a SoundWire slave, where the Application Processor operates as the SoundWire master, with the ability to control the mic and access its Payload data through the SoundWire data stream.

Figure 5. MIPI Example Microphone Topology (left) includes SoundWire ADC. T5808 digital mic with integrated SoundWire Slave functionality connects directly to the SoundWire bus without need for ADC (right).

The audio captured by the T5808 is a low latency PDM bitstream which is transmitted in the Payload of the SoundWire data stream. The T5808 can transmit data from both of its dataports, High Quality Mode and Low Power Listen Mode, simultaneously in the same Payload. This means the SoundWire bus can contain data from multiple T5808 dataports across multiple T5808 microphones, as well as data from other SoundWire devices on the same bus. The T5808 has 7 unique device ID (IDSEL) configurations, allowing connection of up to 7 T5808 SoundWire Microphone Slaves on a single SoundWire bus.

T5808 SoundWire features:

- SoundWire v1.1 slave
- Basic PHY device
- 1.8V signal support
- 7 unique microphones on the system

ATTACHING TO SOUNDWIRE AND TRANSMITTING AUDIO

In order to transmit audio on the SoundWire bus, the T5808 needs to be established (attached) as a SoundWire slave on the bus, set up a data port and then start sending audio data on the data port. This involves transition across three defined modes in the SoundWire protocol:

- 3-1 Sync&Eumeration
- 1-4 Idle1
- 1-1 High Quality <u>OR</u> 1-2 Low Power Listen

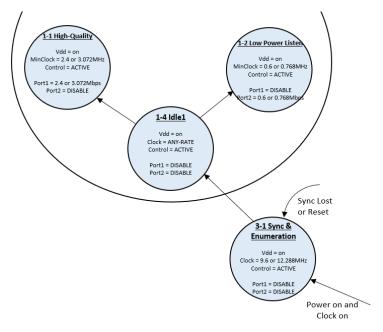


Figure 6. State transitions during start up

SYNC AND ENUMERATION

The T5808 is established as a slave on the SoundWire bus in the Sync And Enumeration mode. On entering the mode the following conditions exist:

- Vdd is on
- SoundWire CLK is on
- T5808 is not attached
- SoundWire has not enumerated the device
- Audio channels are disabled

The T5808 attaches itself as a SoundWire slave by:

- Frame Synchronization: It syncs with the control word within the control portion of the frame with the default device id = 0.
- Slave Enumeration: The master gives it a unique device id to distinguish from the other slaves on the bus.

IDLE1

After enumeration has been successfully carried out the microphone enters Idle1 mode. On entering the mode the following conditions exist:

- Vdd is on
- SoundWire CLK is on
- T5808 is attached
- SoundWire has enumerated the device
- Audio channels are disabled

Before audio data can be sent on the SoundWire bus, a Data Port needs to be set up on the device. A Data Port is a subset of a device that is either a source or sink of one Payload Stream on the SoundWire bus. On the T5808 there are two Data Ports

implemented - Data Port 1 and Data Port 2, for High Quality and Low Power Listen modes respectively. The Data Port has to be configured with the necessary information to describe how the Payload data is organized within a SoundWire frame. This information includes:

- Data Type
- Sample Length
- Sample Interval
- HStart and HStop
- Offset
- Word Length

TRANSMITTING AUDIO (HQM OR LPLM)

When a Data Port has been enabled (Data Port 1 or 2), the mic exits Idle1 mode and enters HQM or LPLM (depending on which is selected) and the audio data captured by the microphone will become active on the SoundWire data bus in the form of a PDM bitstream. The data rate of the bitstream will be determined by the SoundWire clock and the Sample Interval as outlined in the *Frame Structure* section. For HQM this is 2.4Mbps or 3.072Mbps, and for LPLM it is 0.6Mbps or 0.768Mbps. It is possible to leave HQM or LPLM and go back into Idle1 mode at any time.

The HQM and LPLM, and therefore Data Ports 1 and 2, can both be active at the same time in Concurrent mode. However either one of HQM or LPLM have to be established first, before the other mode is added. When in Concurrent mode, it is possible to leave and go back to either HQM or LPLM. It is also possible in Concurrent mode to go directly to Idle1 mode without having to transition to HQM or LPLM first.

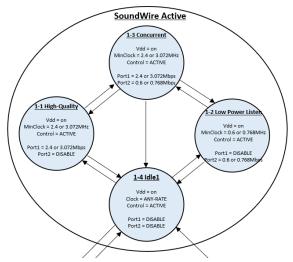


Figure 7. State transition options when the Data Port has been established and the audio stream is up and running

CONCURRENT MODE

In Concurrent Mode the microphone simultaneously outputs HQM and LPLM audio streams on Data Port 1 and Data Port 2 respectively. It can be used to minimize interruption in transitioning from LPLM to HQM and back to LPLM again, by operating as an intermediate mode. By allowing the datastreams to overlap, the SoundWire Master can extract each data stream and stitch together a single uninterrupted audio stream. Concurrent Mode can also be used to provide independent audio streams where two simultaneous applications need LPLM and HQM respectively. Concurrent mode is enabled by the SoundWire capability to output multiple audio data streams at different data rates.

MODE NAME	MODE NUMBER	PORT 1	PORT 2	PDM RATE
High Quality	1-1	Enabled	Disabled	2.4Mbps, 3.072Mbps
Low Power Listen	1-2	Disabled	Enabled	0.6Mbps, 0.768Mbps
Concurrent	1-3	Enabled	Enabled	0.6/2.4Mbps or 0.768/3.072Mbps

TABLE 14. AVAILABLE MODES AND DATA RATES

FRAME STRUCTURE

The SoundWire bitstream is a continuous stream of bits encoded using the modified-NRZI scheme, but for organizational purposes it is conceptually divided into a repetive sequence of bits to form a frame structure. This section focuses on the organization of the frame structure in order to achieve the desired SoundWire Clock, Frame Size and audio Data Rate. Note the T5808 can send and receive Control data in the data frame but it only sends Payload data as it since it is an audio input device to the Master.

The frame is constructed as a two dimensional array of bit slots, with 48 to 256 rows and 2 to 16 columns. The Control data is always contained in the Control Word which is the first 48 rows of the first column. The number of rows and columns is configurable to provide flexibility in creating an efficient data frame to multiplex data from multiple sources.

Some examples of a 48x2 frame are shown below. It shows the Control Word contained in row 0-47, col 0, per the MIPI spec. The Payload data is contained in row 0-47, col1, is generated by the T5808, ID=0, DataPort=1 (High Quality Mode) which is 2.4Mbit PDM data. The three examples show how the same Payload data (2.4Mbit PDM) is transmitted over different SoundWire clocks 2.4MHz, 4.8MHz and 9.6MHz, while the Frame Size remains constant at 96 bits and the Frame Rate scales accordingly. The Frame Rate can be calculated from the SoundWire Clock and the Frame Size:

Frame Rate = SWCLK*2/Frame Size

The sample interval of the PDM bitstream also scales with the SoundWire Clock and Frame Rate:

Sample Interval = SWCLK*2/PDM Data Rate

(Note: Sample Interval must be greater than 1 to allow for Control Word bits)

In the examples below, the Frame Rate increases from 50kHz to 100kHz to 200kHz as SoundWire Clock increases from 2.4Mhz, 4.8MHz and 9.6MHz. Likewise the Sample Interval Increases from 2 to 4 to 8 to keep the PDM data rate constant. By increasing the SoundWire clock rate (and sample interval), more unused data bit slots become available for other bitstreams to use.

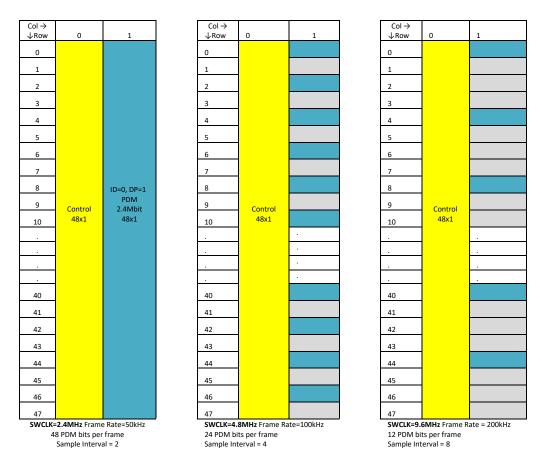


Figure 8. Comparison of different Sample Interval and Frame Rate combinations to achieve 2.4Mbps PDM Payload data

The SoundWire clock should be fast enough to run the highest desired data rate for the bitstream within the Payload. For PDM data at 3.072, 2.4, 0.768 and 0.6Mbps. See Table 15 below for more details.

	Data	Port 1	Data	Port 2
SoundWire CLK	PDM Data Rate	Sample Interval	PDM Data Rate	Sample Interval
12.288MHz	3.072Mbps	8	0.768Mbps	32
9.600MHz	2.400Mbps	8	0.600Mbps	32
6.144MHz	3.072Mbps	4	0.768Mbps	16
4.800MHz	2.400Mbps	4	0.600Mbps	16
3.072Mhz	3.072Mbps	2	0.768Mbps	8
2.400MHz	2.400Mbps	2	0.600Mbps	8
1.536MHz	Min 2.4Mbps	N/A	0.768Mbps	4
1.200MHz	Min 2.4Mbps	N/A	0.600Mbps	4
0.768MHz	Min 2.4Mbps	N/A	0.768Mbps	2
0.600MHz	Min 2.4Mbps	N/A	0.600Mbps	2

TABLE 15. AVAILABLE CLOCK AND DATA RATE COMBINATIONS

Greyed out cells are not valid combinations of SoundWire CLK and Data Port PDM data rates

A larger frame size will also increase the number of available data bits without changing the SoundWire clock rate. The Frame Rate will scale accordingly as shown below:

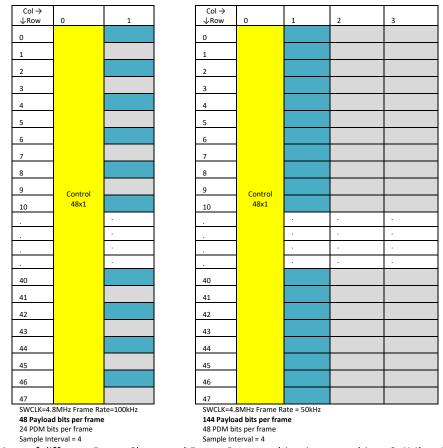


Figure 9. Comparison of different Frame Shape and Frame Rate combinations to achieve 2.4Mbps PDM Payload data

CONTROL WORD

In a similar fashion to the Frame structure, the Control data bits are conceptually organized into a Control Word of 48 bit data. The Control Word is not a continuous sequence of bits since it is interleaved by Payload data, however a word is an effective concept of organizing the control data. The 48 bits in the Control Word are assigned into the following categories:

- Control bits (20) from the Master that keep all interfaces synchronized to the Frame structure
- Command bits (28) from the Master or Monitor with corresponding response bits from the Slave or Master

Within the Command bits are bits which determine the device address, dataport and register for a specific command. SoundWire can write to all devices on the bus, individual device types on the bus or individual devices on the bus.

SoundWire provides a DeviceID[47:0] in the SCP_DevID_0 to SCP_DevID_5 registers that is read by the SoundWireMaster to identify the connected SoundWire slave device. The SoundWire slave DeviceID bits contains bit fields for:

- SoundWire Version (1.1 on this device)[47:44]
- Manufacturer ID [39:32]
- Part ID [23:16]
- Unique ID [43:40]

These fields are fixed except for the slave Unique ID which is pin configurable via the IDSEL pin and has seven possible combinations as shown in Table 7.

SOUNDWIRE REGISTER MAP

The SoundWire register map contains address blocks for the control port and the data ports. On T5818 the base address of the register is defined by whether it is Control Port, DataPort 1 or DataPort 2 as shown in the Table 16 below:

Base Address	Port Name	Prefix for	Notes
Range		Register Name	
0x00000000 -	Control Port	SCP_	Control and status functions common to the whole
0x000000FF			Device.
0x00000100 -	Data Port 1	DP1_	Control and status functions specific to Data Port 1
0x000001FF			
0x00000200 -	Data Port 2	DP2_	Control and status functions specific to Data Port 2
0x000002FF			

TABLE 16. ADDRESS RANGES FOR EACH DATA PORT

The register read/write is based on the base address shown above, along with the register specific offset as shown in Table 17, Table 18 and Table 19. The offset may have two options if it is banked for Bank 0 or Bank 1. Banks of Registers are used as a mechanism to make seamless changes to operation when those changes involve updating parameters in several registers in a device, or registers in several devices.

For detailed register and bit field descriptions, reference the full MIPI SoundWire[®] Specification (Version 1.1). T5808 uses a simplified data port therefore there are certain optional registers and the accompanying transport features are not implemented.

TABLE 17. SOUNDWIRE REGISTER ADDRESS MAP

Base Address =		SISTER ADDRESS MAP	an	
Bank Type / Ad		Name	Access	Notes
Non-Banked			Access	Notes
+ 0x00 - 0x3F		Reserved	None	Optional Data Port 0 not implemented
+ 0x40		SCP IntStat 1	RO	and the second
+ 0x40		SCP IntClear 1	WO	
+ 0x41		SCP IntMask 1	RW	
+ 0x42		SCP IntStat 2	RO	
+ 0x43		SCP IntStat 3	RO	
+ 0x44		SCP Ctrl	WO	
+ 0x44		SCP Stat	RO	
+ 0x45		SCP_SystemCtrl	RW	
+ 0x46		SCP DevNumber	RW	
+ 0x47		SCP_High-PHY_Check	RW	Optional register not implemented
+ 0x48		SCP AddrPage1	RW	Optional register not implemented
+ 0x49		SCP_AddrPage2	RW	Optional register not implemented
+ 0x4A		SCP KeeperEn	RW	
+ 0x4B		SCP BankDelay	RW	Optional register not implemented
+ 0x4C - 0x4E		Reserved	None	
+ 0x4F		SCP TestMode	WO	Optional register not implemented
+ 0x50		SCP Devid 0	RO	
+ 0x51		SCP Devid 1	RO	
+ 0x52		SCP Devid 2	RO	
+ 0x53		SCP Devid 3	RO	
+ 0x54		SCP Devid 4	RO	
+ 0x55		SCP Devid 5	RO	
+ 0x56 – 0x5F		Reserved	None	
Bank 0	Bank 1			
+ 0x60	+ 0x70	SCP FrameCtrl	wo	
+ 0x61	+ 0x71	SCP NextFrame	WO	Optional registers not implemented
+ 0x62 – 0x6F	+ 0x72 – 0x7F	Reserved	None	
Non-Banked				
+ 0x80 – 0xFF		Reserved	None	
Base Address =	= 0x00000100	Data Port 1 Register Map		
Base Address =		Data Port 2 Register Map		
		Registers referenced as DPn, w	vhere <i>n</i> = 1 o	or 2
Bank Type / Ad	ddress Offset	Name	Access	Notes
Non-Banked		1		
+ 0x00		DPn IntStat	RO	
+ 0x00		 DPn_IntClear	WO	
+ 0x01		DPn_IntMask	RW	
+ 0x02		DPn_PortCtrl	RW	
+ 0x03		DPn_BlockCtrl1	RW	
+ 0x04		DPn_PrepareStatus	RO	Feature not implemented (register can be read)
+ 0x05		DPn_PrepareCtrl	RW	Feature not implemented Write response – 'Command Ignored'
0.00 0.45				Read response – ACK=1, data = 0x3F
+ 0x06 – 0x1F		Reserved	None	
Bank 0	Bank 1			
+ 0x20	+ 0x30	DPn_ChannelEn	RW	
+ 0x21	+ 0x31	DPn_BlockCtrl2	RW	Not Required in Simplified Data Port
+ 0x22	+ 0x32	DPn_SampleCtrl1	RW	

公TDK

T5808

				1
+ 0x23	+ 0x33	DPn_SampleCtrl2	RW	Not Required in Simplified Data Port
+ 0x24	+ 0x34	DPn_OffsetCtrl1	RW	
+ 0x25	+ 0x35	DPn_OffsetCtrl2	RW	Not Required in Simplified Data Port
+ 0x26	+ 0x36	DPn_HCtrl	RW	Not Required in Simplified Data Port
+ 0x27	+ 0x37	DPn_BlockCtrl3	RW	Not Required in Simplified Data Port
+ 0x28	+ 0x38	DPn_LaneCtrl	RW	Conditional per multi-lane
+ 0x29 – 0x2F	+ 0x39 – 0x3F	Reserved	None	
Non-Banked			-	
+ 0x40 – 0xFF		Reserved	None	
Base Address =	0x00000300	Data Ports 3 to 14 Register Map	-	
+ 0x000 – 0xBF	F	Reserved	None	Ports 3 to 14 are not implemented
Base Address =	0x00000F00	All Payload Ports Register Addre	ss Aliases	
Bank Type / Ad	dress Offset	Name	Access	Notes
Non-Banked				
+ 0x00		DP_All_P_IntStat	RO	
+ 0x00		DP_All_P_IntClear	WO	
+ 0x01		DP_All_P_IntMask	RW	
+ 0x02		DP_All_P_PortCtrl	RW	
+ 0x03		DP_All_P_BlockCtrl1	RW	
+ 0x04		DP_All_P_PrepareStatus	RO	
+ 0x05		DP_All_P_PrepareCtrl	RW	
+ 0x06 – 0x1F		Reserved	None	
Bank 0	Bank 1			
+ 0x20	+ 0x30	DP_All_P_ChannelEn	RW	
+ 0x21	+ 0x31	DP_All_P_BlockCtrl2	RW	Not Required in Simplified Data Port
+ 0x22	+ 0x32	DP_All_P_SampleCtrl1	RW	
+ 0x23	+ 0x33	DP_All_P_SampleCtrl2	RW	Not Required in Simplified Data Port
+ 0x24	+ 0x34	DP_All_P_OffsetCtrl1	RW	
+ 0x25	+ 0x35	DP_All_P_OffsetCtrl2	RW	Not Required in Simplified Data Port
+ 0x26	+ 0x36	DP_All_P_HCtrl	RW	Not Required in Simplified Data Port
+ 0x27	+ 0x37	DP_All_P_BlockCtrl3	RW	Not Required in Simplified Data Port
+ 0x28	+ 0x38	DP_All_P_LaneCtrl	RW	Conditional per multi-lane
+ 0x29 – 0x2F	+ 0x39 – 0x3F	Reserved	None	
Base Address =	0x00003000	Implementation Defined Registe	ers (DDC)	
Bank Type / Ad	dress Offset	Name	Access	Notes
Non-Banked				
+ 0x00		DDC_Overall_Capability_List	RO	
+ 0x01		DDC_Mic_Directivity	RO	
+ 0x02		DDC_Mic_Min_Sensitivity	RO	
+ 0x03		DDC_Mic_Max_Sensitivity	RO	
+ 0x04		DDC_Mic_AOP	RO	
+ 0x05		DDC_MIC_MAX_AOP	RO	
+ 0x06		DDC_Mic_Clock_Sources	RO	
+ 0x07		DDC_Mic_Change_Audio_Rate	RO	
+ 0x08		DDC_Mic_Min_HPF_Freq	RO	
+ 0x09		DDC_Mic_Max_HPF_Freq	RO	
+ 0x0A		DDC_Mic_Ultrasound_Rates	RO	
+ 0x0B		IO PAD Control	RW	

公TDK SOUNDWIRE REGISTER DEFINITIONS

TABLE 18. SLAVE CONTROL PORT REGISTERS

SCD INITSTAT 1 / SCD INITCLEAD 1

ScP_INTSTAT_1 / SCP_INTCLEAR_1 ADDRESS								
7	6	5	4	3	2	1	0	Default
-	-	Port2	Port1	-	-	Bus Clash	Parity	
		Cascade	Cascade					
		R	0			R/W1C	R/W1C	
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function
7:6	-	Reserved
5:4	Portn Cascade	Indicate whether at least one unmasked interrupt condition is set in the corresponding
	(n=1 or 2)	DPn interrupt status register. Cleared by clearing the the source in the appropriate
		DPn interrupt status register.
		0 – No unmasked interrupt condion exists
		1 – At least one unmasked interrupt condition exists
3	-	Reserved
2	ImpDef1	not implemented
1	Bus Clash	Indicates whether an interrupt is pending due to detection of a bus clash condition.
		Will generate an interrupt if the corresponding mask bit is set.
		Writing a '1' to this bit position clears this condition along with the associated
		interrupt.
		0 – No bus clash detected
		1 – Bus clash detected
0	Parity	Indicates whether a parity error has been detected on the bus. Will generate an
		interrupt if the the corresponding mask bit is set. Writing a '1' to this bit position clears
		this condition along with the associated interrupt
		0 – No parity error detected
		1 – Parity error detected

ScP_INTMASK_1

ADDRESS BASE + 0X41 7 6 5 4 3 2 1 0 Default -Mask Mask Bus Clash Parity RW 0 0 0 0 0 0 0 0 0x00

Bits	Name	Function
7:3	-	Reserved
2	Mask ImpDef1	not used because ImpDef1 is not implemented
1	Mask Bus Clash	Determines whether a bus clash event generates an interrupt 0 – Bus clash does not generate an interrrupt
		1 – Bus clash generates an interrupt
0	Mask Parity	Determines whether a parity error event generates an interrupt 0 – Parity error does not generate an interrupt
		1 – Parity error generates an interrupt

ADDRESS BASE + 0X42

ScP_INTSTAT_	SCP_INTSTAT_2 ADDRESS BAS								
7	6	5	4	3	2	1	0	Default	
						-	-		
	RO								
0	0	0	0	0	0	0	0	0x00	

Bits	Name	Function	
7:0	-	Reserved	Always reads back a '0'

ScP INTSTAT 3

ScP_INTSTAT_	SCP_INTSTAT_3 ADDRESS BAS									
7	6	5	4	3	2	1	0	Default		
						-	-			
	RO									
0	0	0	0	0	0	0	0	0x00		

Bits	Name	Function	
7:0	-	Reserved	Always reads back a '0'

ScP Ctrl / SCP Stat

ScP_Ctrl / S	ScP_Ctrl / SCP_Stat Address Base + 0									
7	6	5	4	3	2	1	0	Default		
Force Rese	t Current	High-PHY_				ClockStop	ClockStop_			
	Bank	NotOK				Now	NotFinished			
WO	RO		RO				RO			
0	0	1	0	0	0	0	0	0x20		

Bits	Name	Function	
7	Force Reset	Used to initiate a device reset	
		0 – No action	
		1 – Force a device reset	
6	CurrentBank	Identifies the current register bank	
		0 – Current register bank is Bank 0	
		1 – Current register bank is Bank 1	
5	High-PHY_NotOK	High-PHY option not supported Alwa	ays reads back a '1'
4:2	-	Reserved	
1	ClockStopNow	Informs the slave that the master is stopping the SoundWire clock at	the end of the next
		frame	
		0 – Normal operation	
		1 – SoundWire clock will stop at the end of the next frame	
0	ClockStop_NotFinished	Indicates whether the device has completed any required shutdow	n sequence and is
		ready for SoundWire master to stop the SoundWire clock via assertion	ng ClockStopNow
		0 – Device is ready for a clock stop event	
		1 – Device not finished with necessary clock stop state transitions	

ScP_SYSTEMCTRL

ADDRESS BASE + 0X45

7	6	5	4	3	2	1	0	Default
			High-PHY_	WakeUP	ClockStop		ClockStop	
			Select	Enable	Mode		Prepare	
RW								
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function	
7:5	-	Reserved	
4	High-PHY_Select	Option not supported	Always reads back a '0'
3	WakeUpEnable	Feature not supported	
2	ClockStopMode	It selects between ClockStopMode0 and ClockStopMode1	
1	-	Reserved	
0	ClockStopPrepare	Feature not supported	

ScP_DEVNUMBER

ADDRESS BASE + 0X46

7	6	5	4	3	2	1	0	Default
		Grou	ıp ID	Device Number				
RW								
0 0 0 0			0	0	0	0	0x00	

Bits	Name	Function
7:6	-	Reserved
5:4	Group ID	 Indicates whether the device is addressable by a group alias in addition to being addressed by commands targeted to its own device number 00 - Normal, not in a shared group 01 - Group 12. The device responds to any commands directed to DevAddr = 12 10 - Group 13. The device responds to any commands directed to DevAddr = 13 11 - Reserved
3:0	Device Number	Indicates the specific device number assigned to the device. This value is compared against the DevAddr field in the control world to determine if the command is targeted to this device.

ScP_KEEPEREN

ADDRESS BASE + 0X4A

							/ (B B I (200 B)	
7	6	5	4	3	2	1	0	Default
KeepEN7	KeepEN6	KeepEN5	KeepEN4	KeepEN3	KeepEN2	KeepEN1	Reserved	
	RW							
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function	
7:1	KeepENn, n=7:1	Unused	Hardwired to '0'
0	Reserved	Bus keeper is permanently disabled (single lane device)	Hardwired to '0'

ScP_DEVID_0

ADDRESS BASE + 0X50

7	6	5	4	3	2	1	0	Default
SoundWire Version				Unique ID				
RO								
0	0	1	0	Х	Х	Х	Х	0x2X

Bits	Name	Function			
7:4	SoundWire Version	Indicates which version of the MIPI SoundWire specification is supported by the device			
		b0010 – SoundWire version 1.1			
		These bits constitute DeviceID [47:44]			
3:0	Unique ID	Uniquely identifies the device if there are multiple instances of this device on the			
		SoundWire bus. See Sync & Enumeration section for operational details.			
		These bits constitute DeviceID [43:40]			

ScP DEVID 1

ScP_DEVID_1							ADDRESS B	ASE + 0X51
7	6	5	4	3	2	1	0	Default
			Manufactu	rer ID [15:8]				
	RO							
0	0	0	0	0	0	1	0	0x02

Bits	Name	Function	
7:0	Manufacturer ID	Upper byte of the MIPI assigned manufacturers device ID	
		These bits constitute DeviceID [39:32]. TDK's manufacturer id is 0x0235	

ScP_DEVID_2

ScP_DEVID_2 ADDRESS BA								
7	6	5	4	3	2	1	0	Default
			Manufactu	rer ID [7:0]				
	RO							
0	0	1	1	0	1	0	1	0x35

Bits	Name	Function			
7:0	Manufacturer ID	Lower byte of the MIPI assigned manufacturers device ID.			
		These bits constitute DeviceID [31:24]. TDK's manufacturer ID is 0x0235			

SCP_DEVID_3 ADDRESS BA								
7	6	5	4	3	2	1	0	Default
			Part ID	0 [15:8]				
	RO							
0	1	0	1	1	0	0	0	0x58

	Bits	Name	Function			
ſ	7:0	Part ID	Upper byte of the Part ID			
			These bits constitute DeviceID [23:16]. Part ID for this microphone is 0x5808			

ScP_DEVID_4 ADDRESS BAS								ASE + 0X54
7	6	5	4	3	2	1	0	Default
			Part II	D [7:0]				
	RO							
0	0	0	0	1	0	0	0	0x08
0	0	0	0	1	0	0	0	0x0

Bits	Name	Function	
7:0	Part ID	Lower byte of the Part ID.	
		These bits constitute DeviceID [15:8]. Part ID for this microphone is 0x5808	

ScP	DEVI	D 5

ScP_DEVID_5	SCP_DEVID_5ADDRESS BASE									
7	6	5	4	3	2	1	0	Default		
Class										
	RO									
0	0	0	0	0	0	0	0	0x00		

Bits	Name	Function
7:0	Class	MIPI defined class encoding
		These bits constitute DeviceID [7:0]. 0x00 indicates no further class information

ScP_FRAMECTRL

BANK 0 - ADDRESS BASE + 0X60 BANK 1 - ADDRESS BASE + 0X70

BANK 1 - ADDRESS BASE + 02									
7	6	5	4	3	2	1	0	Default	
Row Control Column Control									
	WO								
0	0	0	0	0	0	0	0	0x00	

Bits	Name	Function										
7:3	Row Control	Determine	s the numb	er of rows	in the frame	e						
		Row	Number	Row	Number	Row	Number	Row	Number			
		Control	of Rows	Control	of Rows	Control	of Rows	Control	of Rows			
		0x00	48	0x08	96	0x10	192	0x18-1F	Reserved			
		0x01	50	0x09	100	0x11	200					
		0x02	60	0x0A	120	0x12	240					
		0x03	64	0x0B	128	0x13	256					
		0x04	75	0x0C	150	0x14	72					
		0x05	80	0x0D	160	0x15	144					
		0x06	125	0x0E	250	0x16	90					
		0x07	0x07 147 0x0F Reserved 0x17 180									
2:0	Column Control	next frame			nns in the fr				e end of the			
		Column	Number	of Colur	nn Numb	er of						
		Control	Column	s Cont	rol Colur	mns						
		0x0	2	0x4	10)						
		0x1	4	0x5	5 12	2						
		0x2	6	Oxe	5 14	ļ						
		0x3	8	0x7	16	5						
		phase. Wri	tes to this i he inactive	register up	date the fra	me shape a	at the end o	of the next	chronization frame. e end of the			

IDK

	7	6	5	4	3	2	1	0	Default
	-	-	-	-	-	-	Port Ready	Test Fail	
							Stat	Stat	
			R	0			R/W1C	R/W1C	
	0	0	0	0	0	0	0	0	0x00
				•			·		
Bits	Name		Functio	on					
			-						

7:2	-	Reserved or Unused	Hardwired to '0'
1	Port Ready Stat	Not implemented	Hardwired to '0'
0	Test Fail Stat	Not implemented	Hardwired to '0'

Dnn IntMask

Dpn_IntMask							Address	Base + 0x01
7	6	5	4	3	2	1	0	Default
IntMask	IntMask	IntMask	-	-	-	IntMask	IntMask	
ImpDef3	ImpDef2	ImpDef1				Port Ready	Test Fail	
						Mask	Mask	
RW								
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function					
7	IntMaskImpDef3	Not implemented	Hardwired to '0'				
6	IntMaskImpDef2	Not implemented	Hardwired to '0'				
5	IntMaskImpDef1	Not implemented	Hardwired to '0'				
4-2	-	Reserved					
1	Port Ready Mask	Not implemented	Hardwired to '0'				
0	Test Fail Mask	Controls whether the corresponding status bit is able	e to generate an interrupt				
		0 – Disable corresponding status bit from generating an interrupt					
		1 – Enable corresponding status bit to generate an interrupt					

Dpn PortCtrl

Dpn_PortCtrl	ppn_PortCtrl Address Base									
7	7 6 5 4 3 2 1 0									
-	-	Port Direction	Next InvertBank	PortDa	taMode	PortFlo	wMode			
	RW									
0	0	0	0	0	0	0	0	0x00		

Bits	Name	Function						
7:6	-	Reserved						
5	PortDirection	Always TX	Hardwired to '0'					
4	NextInvertBank	Controls which DP bank is in use	does not apply to SCP banked registers)					
		0 – Use the bank targeted in the	control word					
		1 – Use the opposite bank than w	hat is targeted in the control word.					
		Changes takes effect on the next frame						
3:2	PortDataMode	Determine the port Payload data	mode					
		Decode Mode Type						
		00 Normal						
		01 PRBS Test						
		10 Static 0						
		11 Static 1						
1:0	PortFlowMode	Not Implemented	Hardwire to '00'					

Dpn_BlockCtrl1

Address Base + 0x03 7 5 4 3 2 1 0 Default 6 -----Word Length RW 0 0 0 0 0 0 0 0 0x00

Bits	Name	Function
7:3	-	Reserved
2:0	Word Length	Determines the Payload length in bits. Must be programmed to 0 otherwise unpredictable behavior can occur

Dpn_ChannelEn

Bank 0 - Address Base + 0x20

Bank 1 - Address Base + 0x30

						Dulli	I Address D	
7	6	5	4	3	2	1	0	Default
-	-	-	-	-	-	-	EnChannel1	
RW								
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function
7:1	-	Reserved
0	EnChannel1	Controls whether the data port channel 1 is enabled or disabled 0 – Channel disabled 1 – Channel enabled Gets automatically cleared upon internal reset conditions and frame synchronization loss

Bank 0 - Address Base + 0x21

Ban	k 1 - Address	s Base + 0x31

7	6	5	4	3	2	1	0	Default
						BlockGrou		
RW								
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function
7:2	-	Reserved
1:0	BlockGroupControl	Not Supported. It should be kept fixed to '00'

Dpn_SampleCtrl1

Bank 0 - Address Base + 0x22

Bank 1 - Address Base + 0x3											
7	6	5	4	3	2	1	0	Default			
	SampleIntervalLow										
	RW										
0 0 0 0 0 0 0 0											

Bits	Name	Function
7:0	SampleIntervalLow	Lower byte of the sample interval. Formula for sample interval:
		Sample Interval = SampleIntervalLow + (256*SampleIntervalHigh) + 1
		For DP1 – Maximum SampleIntervalLow value = 0d7 (3 lsb's)
		For DP2 – Maximum SampleIntervalLow value = 0d31 (5 lsb's)
		Note: SampleIntervalHigh is hardwired to '0x00' for the T5808

Dpn_OffsetCtrl1

Bank 0 - Address Base + 0x24 Bank 1 - Address Base + 0x34

Dalik 1 - Audiess Dase + 0											
7	6	5	4	3	2	1	0	Default			
	Offset1										
			R	W							
0 0 0 0 0 0 0 0											

Bits	Name	Function
7:0	Offset1	Determines the number of bitslots the Payload data is positioned from the start of the
		transport Payload window of the frame
		For DP1 – The allowable Offset1 values are 1 to 7. Determined by the ratio between the
		SoundWire clock and the internal PDM clock for DP1
		For DP2 – The allowable Offset1 values are 1 to 31. Determined by the ratio between
		the SoundWire clock and the internal PDM clock for DP2
		Note: Offset2 is hardwired to '0x00' for the T5808

DDC_C	Overall_	_Capability_Li	st					Address B	ase + 0x00
	7	6	5	4	3	2	1	0	Default
			Mic_VAD	Mic_LPLM	Mic_HPF_	Mic_AOP_	Mic_SENS_	Mic_DIR_	
					Adj	Adj	Adj	Adj	
				R	0				
	0	0	0	1	0	0	0	0	0x10
			1						
Bits	Name		Functio	on					
7:6	-		Reserv	ed					
5	Mic_V	/AD	Microp	hone voice ac	titvity detectio	on.		Always reads	back a 'O'
4	Mic_L	PLM	Microp	hone Low Pov	ver Listen mod	le support.		Always reads	back a '1'
3	Mic_⊦	IPF_Adj	Microp	hone High Pas	ss Filter adjusti	ment.		Always reads	back a 'O'
2	Mic_A	/lic_AOP_Adj Microphone AOP adjustment. Always reads back							back a 'O'
1	Mic_SENS_Adj Microphone Sensitivity adjustment. Always reads bac						back a 'O'		
0	Mic_D	DIR_Adj	Microp	hone Directiv	ity adjustment			Always reads	back a 'O'

DDC_Mic_Directivity

DDC_Mic_Dir	ectivity						Address E	Base + 0x01	
7	6	5	4	3	2	1	0	Default	
		-	BiDir	Hyper Cardiod	Super Cardiod	Cardiod	OmniDir		
	RO								
0	0	0	0	0	0	0	1	0x01	

Bits	Name	Function	
7:5	-	Reserved	
4	BiDir	Bidirecational (Notch at 90°).	Always reads back a '0'
3	Hyper Cardiod	Hyper Cardiod (Notch at 110°).	Always reads back a '0'
2	Super Cardiod	Super Cardiod (Notch at 126°).	Always reads back a '0'
1	Cardiod	Cardiod (Notch at 180°).	Always reads back a '0'
0	OmniDir	Omnidirectional (Equal sensitivity from all angles).	Always reads back a '1'

DDC Mic Min Sensitivity

DDC_Mic_Mir	DDC_Mic_Min_Sensitivity Address Ba										
7 6 5 4 3 2 1 0											
	Min_Sensitivity [7:0]										
	RO										
1 0 1 0 0 1 0 0											

Bits	Name	Function
7:0	Min_Sensitivity	Reflects the minimum supported sensitivity value:
		0xA4: idle, hqm and concurrent mode
		0x68: lpm

Addross Base

T580

X

T5808

DDC_Mic_Ma	DDC_Mic_Max_Sensitivity Address Base +							
7 6 5 4 3 2 1 0 De								Default
	Max_Sensitivity [7:0]							
	RO							
1	0	1	0	0	1	0	0	0xA4

Bits	Name	Function
7:0	Max_Sensitivity	Reflects the maximum supported sensitivity value:
		0xA4: idle, hqm and concurrent mode
		0x68: lpm

DDC_Mic_AOP

DDC_Mic_AOP Address Base								Base + 0x04
7	6	5	4	3	2	1	0	Default
	Mic_AOP [7:0]							
	RO							
1	0	1	0	1	0	0	0	0xA4

Bits	Name	Function
7:0	Mic_AOP	Reflects the suppported AOP value:
		0xA4: idle, hqm and concurrent mode
		0x68: lpm

DDC MIC MAX AOP

DDC_MIC_MAX_AOP ADDRESS BASE								ASE + 0X05
7	6	5	4	3	2	1	0	Default
	Max_AOP [7:0]							
	RO							
1	0	1	0	1	0	0	0	0xA4

Bits	Name	Function
7:0	Max_AOP	Reflects the maximum supported AOP value:
		0xA4: idle, hqm and concurrent mode
		0x68: lpm

DDC_MIC_CLOCK_SOURCES

ADDRESS BASE + 0X06

7	6	5	4	3	2	1	0	Default
-	-	-	-	-	-	-	Clock_	
							Source	
	RO							
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function
7:1	-	Reserved
0	Clock_Source	Reflects what allowable clock sources can produce audio samples
		0 – Only clock that can produce audio samples is the SoundWire bus clock

DDC_Mic_Change_Audio_Rate

7	6	5	4	3	2	1	0	Default
-	-	-	-	-	-	-	Change_ Audio_Rate	
	RO							
0	0	0	0	0	0	0	0	0x00

Bits	Name	Function
7:1	-	Reserved
0	Change_Audio_Rate	Reflects the microphone audio rate change capabilities
		0 – Microphone audio rate remains constant as long as the channel is active

DDC_Mic_Min_HPF_Freq Address Bas								ase + 0x08	
7	6	5	4	3	2	1	0	Default	
	Min_HPF_Freq [7:0]								
RO									
0	0	1	0	0	1	0	0	0x24	

Bits	Name	Function
7:0	Min_HPF_Freq	Reflects the minimum value in Hz supported by the HPF, the -3dB point
		Fixed value of 36Hz in decimal

DDC_Mic_Max_HPF_Freq

DDC_Mic_Max_HPF_Freq Address Bas								ase + 0x09	
7	6	5	4	3	2	1	0	Default	
	Max_HPF_Freq [7:0]								
RO									
0	0	1	0	0	1	0	0	0x24	

Bits	Name	Function
7:0	Max_HPF_Freq	Reflects the maximum value in Hz supported by the HPF, the -3dB point
		Fixed value of 36Hz in decimal

DDC_MIC_ULTRASOUND_RATES

DDC_MIC_ULTRASOUND_RATES ADDRESS E								S BASE + 0X0A	
7	6	5	4	3	2	1	0	Default	
	Ultrasound Rate								
RO									
0	0	0	0	0	0	0	0	0x00	

Bits	Name	Function	
7:0	Ultrasound rate	Ultrasound rates not support	Hardwired to '0x00'

I	O PAD Contro	bl						Address B	ase + 0x0B
	7	6	5	4	3	2	1	0	Default
	dt_slew_	_rate_ctrl	dt_	drive_strength_	ctrl		1		
	RW								
ĺ	0	0	0	0	0	0	0	0	0x00

Bits	Name	Function
7:6	dt_slew_rate_ctrl	Not used
5:3	dt_drive_strength_ctrl	Not used
2:0	dt_cap_load_ctrl	Selects the driving capability
		000: Cload 30-66 pF (default)
		001: Cload 2-11 pf
		010: Cload 10-33 pf
		011: Cload 30-66 pF
		Others values not used

ABSOLUTE MAXIMUM RATINGS

Stress above those listed as Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

TABLE 21. ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING
Supply Voltage (V _{DD})	-0.3 V to +1.98 V
Digital Pin Input Voltage	-0.3 V to V _{DD} + 0.3 V or 1.98 V, whichever is less
Mechanical Shock	10,000 g
Vibration	Per MIL-STD-883 Method 2007, Test Condition B
Temperature Range	
Operating	-40°C to +85°C
Storage	-55°C to +150°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

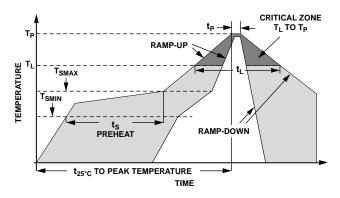
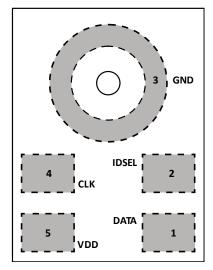
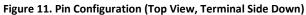


Figure 10. Recommended Soldering Profile Limits


TABLE 22. RECOMMENDED SOLDERING PROFILE*


PROFILE FE	ATURE	Sn63/Pb37	Pb-Free
Average Ra	mp Rate (T∟to T _P)	1.25°C/sec max	1.25°C/sec max
	Minimum Temperature (T _{SMIN})	100°C	100°C
Preheat	Maximum Temperature (T _{SMAX})	150°C	200°C
	Time (T _{SMIN} to T _{SMAX}), ts	60 sec to 75 sec	60 sec to 75 sec
Ramp-Up R	ate (T _{SMAX} to T _L)	1.25°C/sec	1.25°C/sec
Time Maint	tained Above Liquidous (t _L)	45 sec to 75 sec	~50 sec
Liquidous T	emperature (T _L)	183°C	217°C
Peak Temp	erature (T _P)	215°C +3°C/–3°C	260°C +0°C/-5°C
Time Withi Temperatu	n +5°C of Actual Peak re (t _P)	20 sec to 30 sec	20 sec to 30 sec
Ramp-Dow	n Rate	3°C/sec max	3°C/sec max
Time +25°C	C (t _{25°C}) to Peak Temperature	5 min max	5 min max

*The reflow profile in Figure 10. is recommended for board manufacturing with TDK MEMS microphones. All microphones are also compatible with the J-STD-020 profile

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

TABLE 23. PIN FUNCTION DESCRIPTIONS

PIN	NAME	FUNCTION
1	DATA	SoundWire Bi-directional Data Signal
2	IDSEL	Device Identification Input. Impedance of this pin is sensed during the enumeration phase to determine the microphone's unique identification bit field. Connect a resistor between this pin and GND (See Table 7 for operational description and a table of resistor values)
3	GND	Ground
4	CLK	SoundWire Clock Input to Microphone
5	VDD	Power Supply. For best performance and to avoid potential parasitic artifacts, place a 0.1 μ F (100 nF) ceramic type X7R capacitor between Pin 5 (VDD) and ground. Place the capacitor as close to Pin 5 as possible.

TYPICAL PERFORMANCE CHARACTERISTICS

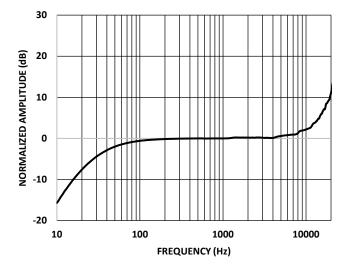


Figure 12. Typical Frequency Response

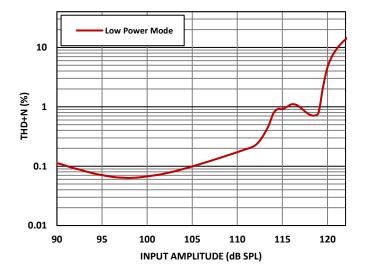


Figure 14. THD + N Low Power Mode

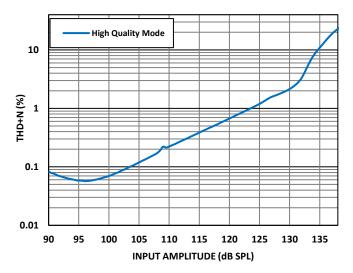


Figure 13. THD + N High Quality Mode

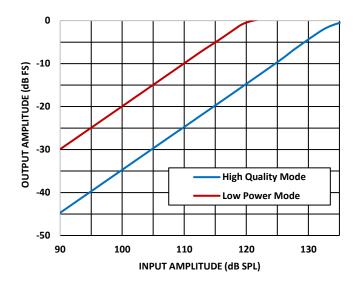


Figure 15. Linearity

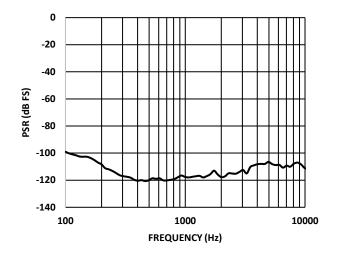


Figure 16. Power Supply Rejection (PSR) vs. Frequency, High Quality Mode

SUPPORTING DOCUMENTS

For additional information, see the following documents.

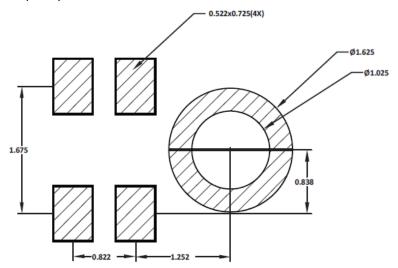
APPLICATION NOTES – GENERAL

AN-100: MEMS Microphone Handling and Assembly Guide

AN-1003: Recommendations for Mounting and Connecting the TDK, Bottom-Ported MEMS Microphones

AN-1112: Microphone Specifications Explained

AN-1124: Recommendations for Sealing TDK Bottom-Port MEMS Microphones from Dust and Liquid Ingress


AN-1140: Microphone Array Beamforming

PCB DESIGN AND LAND PATTERN LAYOUT

The recommended PCB land pattern for the T5808 is a 1:1 ratio of the solder pads on the microphone package, as shown in Figure 17. Avoid applying solder paste to the sound hole in the PCB. A suggested solder paste stencil pattern layout is shown in Figure 18.

The response of the T5808 is not affected by the PCB hole size as long as the hole is not smaller than the sound port of the microphone (0.375 mm in diameter). A 0.5 mm to 1 mm diameter for the hole is recommended. Take care to align the hole in the microphone package with the hole in the PCB. The exact degree of the alignment does not affect the microphone performance as long as the holes are not partially or completely blocked.

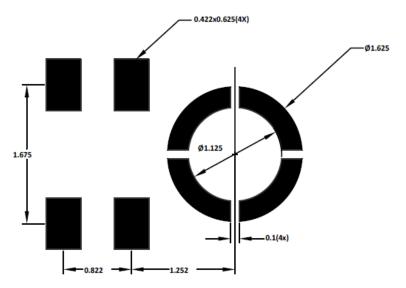


Figure 18. Suggested Solder Paste Stencil Pattern Layout

PCB MATERIAL AND THICKNESS

The T5808 can be mounted on either a rigid or flexible PCB. A microphone's lid can be attached directly to the device housing with an adhesive layer. This mounting method offers a reliable seal around the sound port while providing the shortest acoustic path for good sound quality. The sound port can also be routed to the device housing through a port in a rubber boot. This boot should be designed to seal the connection between the microphone's lid and the rubber completely.

HANDLING INSTRUCTIONS

PICK AND PLACE EQUIPMENT

The MEMS microphone can be handled using standard pick-and-place and chip shooting equipment. Take care to avoid damage to the MEMS microphone structure as follows:

- Use a standard pickup tool to handle the microphone. Because the microphone hole is on the top of the package, the pickup tool should not be placed over the microphone port.
- Do not pull air out of or blow air into the microphone port.
- Do not use excessive force to place the microphone on the PCB.

REFLOW SOLDER

For best results, the soldering profile must be in accordance with the recommendations of the manufacturer of the solder paste used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 10 and Table 22.

BOARD WASH

When washing the PCB, ensure that water does not make contact with the microphone port. Do not use blow-off procedures or ultrasonic cleaning.

公TDK

OUTLINE DIMENSIONS

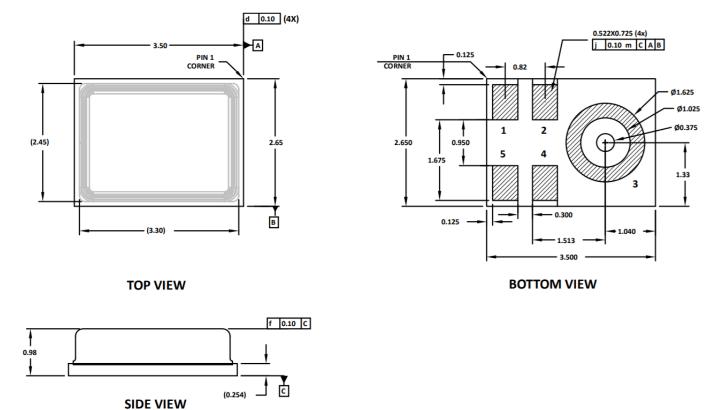
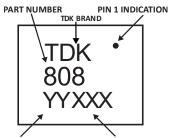



Figure 19: 5 Terminal Chip Array Small Outline No-Lead Cavity

3.50 mm × 2.65 mm × 0.98 mm Body (Dimensions shown in millimeters)

DATE CODE LOT TRACEABILITY CODE

Figure 20. Package Marking Specification (Top View)

ORDERING GUIDE

PART	TEMP RANGE	PACKAGE	QUANTITY	PACKAGING
MMICT5808-00-012	-40°C to +85°C	5-Terminal LGA_CAV	10,000	13" Tape and Reel

REVISION HISTORY

REVISION DATE	REVISION	DESCRIPTION
12/13/2019	1.0	Initial version
1/2/2020	1.1	Fixed typos
2/6/2020	1.2	Fixed typo ordering guide part name

COMPLIANCE DECLARATION DISCLAIMER

TDK believes the environmental and other compliance information given in this document to be correct but cannot guarantee accuracy or completeness. Conformity documents substantiating the specifications and component characteristics are on file. TDK subcontracts manufacturing, and the information contained herein is based on data received from vendors and suppliers, which has not been validated by TDK.

This information furnished by TDK, Inc. ("TDK") is believed to be accurate and reliable. However, no responsibility is assumed by TDK for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. TDK reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. TDK makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. TDK assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by TDK and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of TDK. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. TDK sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2019 TDK. All rights reserved. TDK, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the TDK logo are trademarks of TDK, Inc.

